login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A164397
Number of binary strings of length n with no substrings equal to 0001 or 0111.
2
1, 2, 4, 8, 14, 24, 41, 68, 112, 184, 300, 488, 793, 1286, 2084, 3376, 5466, 8848, 14321, 23176, 37504, 60688, 98200, 158896, 257105, 416010, 673124, 1089144, 1762278, 2851432, 4613721, 7465164, 12078896, 19544072, 31622980, 51167064, 82790057, 133957134
OFFSET
0,2
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..2000 (first 500 terms from R. H. Hardin)
FORMULA
G.f.: -1/((x^2+x+1)*(x^2+x-1)*(x-1)^2). - R. J. Mathar, Nov 30 2011
MATHEMATICA
LinearRecurrence[{2, 0, 0, -2, 0, 1}, {14, 24, 41, 68, 112, 184}, 40] (* Harvey P. Dale, Jan 23 2012 *)
CoefficientList[Series[-1 (14 - 4 x - 7 x^2 - 14 x^3 + 4 x^4 + 8 x^5) / ((1 + x + x^2) (x^2 + x - 1) (x - 1)^2), {x, 0, 33}], x] (* Vincenzo Librandi, Sep 19 2017 *)
PROG
(PARI) x='x+O('x^50); Vec(-x^4*(14-4*x-7*x^2-14*x^3+4*x^4+8*x^5)/( (1+x+x^2)*(x^2+x-1)*(x-1)^2 )) \\ G. C. Greubel, Sep 18 2017
(Magma) I:=[14, 24, 41, 68, 112, 184]; [n le 6 select I[n] else 2*Self(n-1)-2*Self(n-4)+Self(n-6): n in [1..40]]; // Vincenzo Librandi, Sep 19 2017
CROSSREFS
Cf. A178982.
Sequence in context: A182747 A164406 A178982 * A164174 A164396 A164400
KEYWORD
nonn,easy
AUTHOR
R. H. Hardin, Aug 14 2009
EXTENSIONS
Edited by Alois P. Heinz, Oct 27 2017
STATUS
approved