login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178983
The smallest cube containing n as a substring.
1
0, 1, 27, 343, 64, 125, 64, 27, 8, 729, 1000, 91125, 125, 1331, 140608, 15625, 216, 1728, 85184, 2197, 205379, 216, 226981, 103823, 13824, 125, 9261, 27, 1728, 729, 39304, 1331, 5832, 1331, 343, 35937, 97336, 3375, 13824, 39304, 4096, 531441, 42875, 343
OFFSET
0,3
EXAMPLE
a(3) = 7^3 = 343, because it contains 3 as a substring and no smaller cube contains 3.
MATHEMATICA
subs[n_] := Module[{d = IntegerDigits[n], len}, len = Length[d]; Union[Flatten[Table[FromDigits[Take[d, {i, k}]], {k, len}, {i, k}]]]]; Table[k = 0; While[! MemberQ[subs[k^3], n], k++]; k^3, {n, 0, 100}] (* T. D. Noe, Nov 06 2013 *)
With[{cbs=Range[0, 100]^3}, Table[SelectFirst[cbs, SequenceCount[IntegerDigits[#], IntegerDigits[n]]>0&], {n, 0, 50}]] (* Harvey P. Dale, Nov 17 2024 *)
PROG
(Ruby)
# For a given nonnegative integer n,
# find the smallest nonnegative cube that contains it as a substring.
NUM_TERMS = 30
(0...NUM_TERMS).each{ |i|
(0..(1.0/0.0)).each{ |j|
(print "#{j*j*j}" + ", "; break) if "#{j*j*j}".include?("#{i}")
}
}
CROSSREFS
Sequence in context: A182668 A076394 A133211 * A029947 A030673 A030683
KEYWORD
nonn,easy,base
AUTHOR
Andy Martin, Jan 02 2011
EXTENSIONS
Edited by Alois P. Heinz, Jan 02 2011
STATUS
approved