login
A076394
a(n) = p(11n+6)/11 where p(n) = number of partitions of n (A000041).
10
1, 27, 338, 2835, 18566, 101955, 490253, 2121679, 8424520, 31120519, 108082568, 355805845, 1117485621, 3366123200, 9767105406, 27398618368, 74534264393, 197147918679, 508189847045, 1279140518117, 3149375120229, 7596463993261
OFFSET
0,2
COMMENTS
That p(11n+6) == 0 (mod 11) is one of the congruences stated by Ramanujan. - Omar E. Pol, Jan 18 2013
LINKS
Lasse Winquist, An elementary proof of p(11m+6) == 0 (mod 11), J. Combinatorial Theory 6 1969 56--59. MR0236136 (38 #4434). - From N. J. A. Sloane, Jun 07 2012
FORMULA
a(n) = A000041(A017461(n))/11 = A213256(n)/11. - Omar E. Pol, Jan 18 2013
MAPLE
seq(combinat:-numbpart(11*n+6)/11, n=0..30); # Robert Israel, Jan 07 2015
MATHEMATICA
PartitionsP[(11*Range[0, 30]+6)]/11 (* Harvey P. Dale, May 28 2015 *)
PROG
(PARI) a(n) = numbpart(11*n+6)/11; \\ Michel Marcus, Jan 07 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Jeff Burch, Nov 07 2002
STATUS
approved