The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A071734 a(n) = p(5n+4)/5 where p(k) denotes the k-th partition number. 18
 1, 6, 27, 98, 315, 913, 2462, 6237, 15035, 34705, 77231, 166364, 348326, 710869, 1417900, 2769730, 5308732, 9999185, 18533944, 33845975, 60960273, 108389248, 190410133, 330733733, 568388100, 967054374, 1629808139, 2722189979 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS One of the congruences related to the partition numbers stated by Ramanujan. Also the coefficients in the expansion of C^5/B^6, in Watson's notation (p. 105). The connection to the partition function is in equation (3.31) with right side 5C^5/B^6 where B = x * f(-x^24), C = x^5 * f(-x^120) where f() is a Ramanujan theta function. Alternatively B = eta(q^24), C = eta(q^120). - Michael Somos, Jan 06 2015 REFERENCES Berndt and Rankin, "Ramanujan: letters and commentaries", AMS-LMS, History of mathematics, vol. 9, pp. 192-193 G. H. Hardy, Ramanujan, Cambridge Univ. Press, 1940. - From N. J. A. Sloane, Jun 07 2012 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..1000 S. Bouroubi and N. Benyahia Tani, A new identity for complete Bell polynomials based on a formula of Ramanujan, J. Integer Seq. 12 (2009), 09.3.5. J. L. Drost, A Shorter Proof of the Ramanujan Congruence Modulo 5, Amer. Math. Monthly 104(10) (1997), 963-964. M. D. Hirschhorn, Another Shorter Proof of Ramanujan's Mod 5 Partition Congruence, and More, Amer. Math. Monthly 106(6) (1999), 580-583. M. Savic, The Partition Function and Ramanujan's 5k+4 Congruence, Mathematics Exchange 1(1) (2003), 2-4. G. N. Watson, Ramanujans Vermutung über Zerfällungszahlen, J. Reine Angew. Math. (Crelle) 179 (1938), 97-128. Lasse Winquist, An elementary proof of p(11m+6) == 0 (mod 11), J. Combinatorial Theory 6(1) (1969), 56-59. MR0236136 (38 #4434). - From N. J. A. Sloane, Jun 07 2012 FORMULA a(n) = (1/5)*A000041(5n+4). G.f.: Product_{n>=1} (1 - x^(5*n))^5/(1 - x^n)^6 due to Ramanujan's identity. - Paul D. Hanna, May 22 2011 a(n) = A000041(A016897(n))/5 = A213260(n)/5. - Omar E. Pol, Jan 18 2013 Euler transform of period 5 sequence [ 6, 6, 6, 6, 1, ...]. - Michael Somos, Jan 07 2015 Expansion of q^(-19/24) * eta(q^5)^5 / eta(q)^6 in powers of q. - Michael Somos, Jan 07 2015 a(n) ~ exp(Pi*sqrt(10*n/3)) / (100*sqrt(3)*n). - Vaclav Kotesovec, Nov 28 2016 EXAMPLE G.f. = 1 + 6*x + 27*x^2 + 98*x^3 + 315*x^4 + 913*x^5 + 2462*x^6 + ... G.f. = q^19 + 6*q^43 + 27*q^67 + 98*q^91 + 315*q^115 + 913*q^139 + ... MAPLE with(combinat): a:= n-> numbpart(5*n+4)/5: seq(a(n), n=0..40);  # Alois P. Heinz, Jan 07 2015 MATHEMATICA a[ n_] := PartitionsP[ 5 n + 4] / 5; (* Michael Somos, Jan 07 2015 *) a[ n_] := SeriesCoefficient[ 1 / QPochhammer[ x], {x, 0, 5 n + 4}] / 5; (* Michael Somos, Jan 07 2015 *) nmax = 50; CoefficientList[Series[Product[(1 - x^(5*k))^5/(1 - x^k)^6, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 28 2016 *) PROG (PARI) {a(n) = if( n<0, 0, polcoeff( 1 / eta(x + O(x^(5*n + 5))), 5*n + 4) / 5)}; (PARI) {a(n) = numbpart(5*n + 4) / 5}; (PARI) a(n)=polcoeff(prod(m=1, n, (1-x^(5*m))^5/(1-x^m +x*O(x^n))^6), n) \\ Paul D. Hanna CROSSREFS Cf. A000041, A016897, A071746, A076394, A213256, A213260. Sequence in context: A001940 A320049 A121591 * A160507 A182821 A277283 Adjacent sequences:  A071731 A071732 A071733 * A071735 A071736 A071737 KEYWORD easy,nonn AUTHOR Benoit Cloitre, Jun 24 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 27 21:45 EST 2022. Contains 350654 sequences. (Running on oeis4.)