login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A071734 a(n) = p(5n+4)/5 where p(k) denotes the k-th partition number. 18
1, 6, 27, 98, 315, 913, 2462, 6237, 15035, 34705, 77231, 166364, 348326, 710869, 1417900, 2769730, 5308732, 9999185, 18533944, 33845975, 60960273, 108389248, 190410133, 330733733, 568388100, 967054374, 1629808139, 2722189979 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

One of the congruences related to the partition numbers stated by Ramanujan.

Also the coefficients in the expansion of C^5/B^6, in Watson's notation (p. 105). The connection to the partition function is in equation (3.31) with right side 5C^5/B^6 where B = x * f(-x^24), C = x^5 * f(-x^120) where f() is a Ramanujan theta function. Alternatively B = eta(q^24), C = eta(q^120). - Michael Somos, Jan 06 2015

REFERENCES

Berndt and Rankin, "Ramanujan: letters and commentaries", AMS-LMS, History of mathematics, vol. 9, pp. 192-193

G. H. Hardy, Ramanujan, Cambridge Univ. Press, 1940. - From N. J. A. Sloane, Jun 07 2012

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..1000

S. Bouroubi and N. Benyahia Tani, A new identity for complete Bell polynomials based on a formula of Ramanujan, J. Integer Seq. 12 (2009), 09.3.5.

J. L. Drost, A Shorter Proof of the Ramanujan Congruence Modulo 5, Amer. Math. Monthly 104(10) (1997), 963-964.

M. D. Hirschhorn, Another Shorter Proof of Ramanujan's Mod 5 Partition Congruence, and More, Amer. Math. Monthly 106(6) (1999), 580-583.

M. Savic, The Partition Function and Ramanujan's 5k+4 Congruence, Mathematics Exchange 1(1) (2003), 2-4.

G. N. Watson, Ramanujans Vermutung über Zerfällungszahlen, J. Reine Angew. Math. (Crelle) 179 (1938), 97-128.

Lasse Winquist, An elementary proof of p(11m+6) == 0 (mod 11), J. Combinatorial Theory 6(1) (1969), 56-59. MR0236136 (38 #4434). - From N. J. A. Sloane, Jun 07 2012

FORMULA

a(n) = (1/5)*A000041(5n+4).

G.f.: Product_{n>=1} (1 - x^(5*n))^5/(1 - x^n)^6 due to Ramanujan's identity. - Paul D. Hanna, May 22 2011

a(n) = A000041(A016897(n))/5 = A213260(n)/5. - Omar E. Pol, Jan 18 2013

Euler transform of period 5 sequence [ 6, 6, 6, 6, 1, ...]. - Michael Somos, Jan 07 2015

Expansion of q^(-19/24) * eta(q^5)^5 / eta(q)^6 in powers of q. - Michael Somos, Jan 07 2015

a(n) ~ exp(Pi*sqrt(10*n/3)) / (100*sqrt(3)*n). - Vaclav Kotesovec, Nov 28 2016

EXAMPLE

G.f. = 1 + 6*x + 27*x^2 + 98*x^3 + 315*x^4 + 913*x^5 + 2462*x^6 + ...

G.f. = q^19 + 6*q^43 + 27*q^67 + 98*q^91 + 315*q^115 + 913*q^139 + ...

MAPLE

with(combinat):

a:= n-> numbpart(5*n+4)/5:

seq(a(n), n=0..40);  # Alois P. Heinz, Jan 07 2015

MATHEMATICA

a[ n_] := PartitionsP[ 5 n + 4] / 5; (* Michael Somos, Jan 07 2015 *)

a[ n_] := SeriesCoefficient[ 1 / QPochhammer[ x], {x, 0, 5 n + 4}] / 5; (* Michael Somos, Jan 07 2015 *)

nmax = 50; CoefficientList[Series[Product[(1 - x^(5*k))^5/(1 - x^k)^6, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 28 2016 *)

PROG

(PARI) {a(n) = if( n<0, 0, polcoeff( 1 / eta(x + O(x^(5*n + 5))), 5*n + 4) / 5)};

(PARI) {a(n) = numbpart(5*n + 4) / 5};

(PARI) a(n)=polcoeff(prod(m=1, n, (1-x^(5*m))^5/(1-x^m +x*O(x^n))^6), n) \\ Paul D. Hanna

CROSSREFS

Cf. A000041, A016897, A071746, A076394, A213256, A213260.

Sequence in context: A001940 A320049 A121591 * A160507 A182821 A277283

Adjacent sequences:  A071731 A071732 A071733 * A071735 A071736 A071737

KEYWORD

easy,nonn

AUTHOR

Benoit Cloitre, Jun 24 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 29 20:42 EDT 2020. Contains 334710 sequences. (Running on oeis4.)