login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277283
Expansion of Product_{n>=1} (1 - x^(6*n))/(1 - x^n)^6 in powers of x.
3
1, 6, 27, 98, 315, 918, 2491, 6366, 15498, 36182, 81501, 177876, 377558, 781626, 1582173, 3137832, 6108051, 11687598, 22012816, 40855674, 74799828, 135210868, 241511115, 426570624, 745516240, 1290006276, 2211202692, 3756468658, 6327617862, 10572763842
OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, q-Pochhammer Symbol
FORMULA
G.f.: Product_{n>=1} (1 - x^(6*n))/(1 - x^n)^6.
G.f.: (x^6; x^6)_inf/((x; x)_inf)^6, where (a; q)_inf is the q-Pochhammer symbol. - Vladimir Reshetnikov, Nov 20 2016
a(n) ~ 35*sqrt(35) * exp(sqrt(35*n)*Pi/3) / (3456*sqrt(3)*n^2). - Vaclav Kotesovec, Nov 21 2016
EXAMPLE
G.f.: 1 + 6*x + 27*x^2 + 98*x^3 + 315*x^4 + 918*x^5 + 2491*x^6 + ...
MATHEMATICA
(QPochhammer[x^6, x^6]/QPochhammer[x, x]^6 + O[x]^40)[[3]] (* Vladimir Reshetnikov, Nov 20 2016 *)
nmax = 50; CoefficientList[Series[Product[(1 - x^(6*k))/(1 - x^k)^6, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 21 2016 *)
PROG
(PARI) first(n)=my(x='x); Vec(prod(k=1, n, (1-x^(6*k))/(1-x^k)^6, 1+O(x^(n+1)))) \\ Charles R Greathouse IV, Nov 07 2016
CROSSREFS
Cf. Expansion of Product_{n>=1} (1 - x^(k*n))/(1 - x^n)^k in powers of x: A015128 (k=2), A273845 (k=3), A274327 (k=4), A277212 (k=5), this sequence (k=6), A160539 (k=7).
Sequence in context: A071734 A160507 A182821 * A160533 A023005 A001874
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 07 2016
STATUS
approved