login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277285
Numbers n such that d(n) divides 2^n-1.
2
1, 4, 16, 36, 144, 324, 400, 576, 729, 784, 900, 1764, 1936, 2304, 2500, 2704, 2916, 3600, 4356, 4624, 5184, 5776, 6084, 7056, 8100, 8464, 9604, 10000, 10404, 11664, 12996, 13456, 14400, 15376, 15876, 16384, 17424, 19044, 20736, 21904, 22500, 24336, 25600, 26244, 26896, 28224, 29584, 30276
OFFSET
1,2
COMMENTS
Sequence is infinite and all terms are squares. Square roots of terms are 1, 2, 4, 6, 12, 18, 20, 24, 27, 28, 30, 42, 44, 48, 50, 52, 54, 60, 66, 68, 72, 76, 78, 84, 90, 92, 98, 100, 102, 108, 114, 116, 120, 124, 126, 128, 132, 138, 144, ...
MAPLE
a:= proc(n) option remember; local k;
for k from 1+`if`(n=1, 0, a(n-1))
while 0<>2&^k-1 mod numtheory[tau](k) do od; k
end:
seq(a(n), n=1..50); # Alois P. Heinz, Nov 06 2016
MATHEMATICA
Select[Range[10^5], Divisible[2^# - 1, DivisorSigma[0, #]] &] (* Michael De Vlieger, Oct 10 2016 *)
PROG
(PARI) is(n) = (2^n-1) % numdiv(n) == 0;
(PARI) is(n)=Mod(2, numdiv(n))^n==1; \\ Joerg Arndt, Oct 09 2016
(Python)
from sympy import divisor_count
A277285_list = [1] + [j for j in (i**2 for i in range(1, 10**4)) if pow(2, j, int(divisor_count(j))) == 1] # Chai Wah Wu, Nov 06 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Altug Alkan, Oct 09 2016, following a suggestion from Michel Marcus and N. J. A. Sloane
STATUS
approved