login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318149
e-numbers of free pure symmetric multifunctions with one atom.
5
1, 4, 16, 36, 128, 256, 441, 1296, 2025, 16384, 21025, 65536, 77841, 194481, 220900, 279936, 1679616, 1803649, 4100625, 4338889, 268435456, 273571600, 442050625, 449482401, 1801088541, 4294967296, 4334247225, 6059221281
OFFSET
1,2
COMMENTS
If n = 1 let e(n) be the leaf symbol "o". Given a positive integer n > 1 we construct a unique orderless expression e(n) (as can be represented in functional programming languages such as Mathematica) with one atom by expressing n as a power of a number that is not a perfect power to a product of prime numbers: n = rad(x)^(prime(y_1) * ... * prime(y_k)) where rad = A007916. Then e(n) = e(x)[e(y_1), ..., e(y_k)]. For example, e(21025) = o[o[o]][o] because 21025 = rad(rad(1)^prime(rad(1)^prime(1)))^prime(1). The sequence consists of all numbers n such that e(n) contains no empty subexpressions f[].
EXAMPLE
The sequence of free pure symmetric multifunctions with one atom "o", together with their e-numbers begins:
1: o
4: o[o]
16: o[o,o]
36: o[o][o]
128: o[o[o]]
256: o[o,o,o]
441: o[o,o][o]
1296: o[o][o,o]
2025: o[o][o][o]
16384: o[o,o[o]]
21025: o[o[o]][o]
65536: o[o,o,o,o]
77841: o[o,o,o][o]
194481: o[o,o][o,o]
220900: o[o,o][o][o]
279936: o[o][o[o]]
MATHEMATICA
nn=1000;
radQ[n_]:=If[n==1, False, GCD@@FactorInteger[n][[All, 2]]==1];
rad[n_]:=rad[n]=If[n==0, 1, NestWhile[#+1&, rad[n-1]+1, Not[radQ[#]]&]];
Clear[radPi]; Set@@@Array[radPi[rad[#]]==#&, nn];
exp[n_]:=If[n==1, "o", With[{g=GCD@@FactorInteger[n][[All, 2]]}, Apply[exp[radPi[Power[n, 1/g]]], exp/@Flatten[Cases[FactorInteger[g], {p_?PrimeQ, k_}:>ConstantArray[PrimePi[p], k]]]]]];
Select[Range[nn], FreeQ[exp[#], _[]]&]
PROG
(Python) See Neder link.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 19 2018
EXTENSIONS
a(16)-a(27) from Charlie Neder, Sep 01 2018
STATUS
approved