login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A280000
Number of free pure symmetric multifunctions in one symbol with n positions.
28
1, 0, 1, 1, 3, 5, 12, 25, 57, 128, 296, 688, 1618, 3839, 9170, 22065, 53370, 129807, 317080, 777887, 1915247, 4731932, 11726476, 29143123, 72614115, 181363151, 453975928, 1138697689, 2861607677, 7204169689
OFFSET
1,5
COMMENTS
A free pure symmetric multifunction (PSM) in one symbol x is either (case 1) the symbol x, or (case 2) an expression of the form h[g_1,...,g_k] where h is a PSM in x, each of the g_i for i=1..(k>0) is a PSM in x, and for i < j we have g_i <= g_j under a canonical total ordering such as the Mathematica ordering. The number of positions in a PSM is the number of brackets [...] plus the number of x's.
LINKS
EXAMPLE
Sequence of free pure symmetric multifunctions (second column) together with their numbers of positions (first column) and j-numbers (third column, see A279944 for details) begins:
1 x 1
3 x[x] 2
4 x[x,x] 8
5 x[x][x] 3
5 x[x[x]] 4
5 x[x,x,x] 128
6 x[x,x][x] 12
6 x[x][x,x] 27
6 x[x,x[x]] 32
6 x[x,x,x,x] 32768
6 x[x[x,x]] 262144
7 x[x][x][x] 5
7 x[x[x]][x] 6
7 x[x][x[x]] 9
7 x[x[x][x]] 16
7 x[x[x[x]]] 64
7 x[x,x,x][x] 145
7 x[x,x][x,x] 1728
7 x[x,x,x[x]] 2048
7 x[x][x,x,x] 2187
7 x[x,x,x,x,x] 2147483648
7 x[x,x[x,x]] 137438953472
7 x[x[x,x,x]] 1378913...3030144
MATHEMATICA
multing[t_, n_]:=Array[(t+#-1)/#&, n, 1, Times];
a[n_]:=If[n===1, 1, Sum[a[k]*Sum[Product[multing[a[First[s]], Length[s]], {s, Split[p]}], {p, IntegerPartitions[n-k-1]}], {k, 1, n-2}]];
Array[a, 15]
PROG
(PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
seq(n)={my(v=[1]); for(n=2, n, my(t=EulerT(v)); v=concat(v, sum(k=1, n-2, v[k]*t[n-k-1]))); v} \\ Andrew Howroyd, Aug 19 2018
CROSSREFS
Cf. A005043 (non-symmetric case), A279944.
Sequence in context: A135019 A141685 A017921 * A241097 A267725 A161762
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 24 2016
STATUS
approved