login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of free pure symmetric multifunctions in one symbol with n positions.
28

%I #8 Aug 19 2018 16:46:12

%S 1,0,1,1,3,5,12,25,57,128,296,688,1618,3839,9170,22065,53370,129807,

%T 317080,777887,1915247,4731932,11726476,29143123,72614115,181363151,

%U 453975928,1138697689,2861607677,7204169689

%N Number of free pure symmetric multifunctions in one symbol with n positions.

%C A free pure symmetric multifunction (PSM) in one symbol x is either (case 1) the symbol x, or (case 2) an expression of the form h[g_1,...,g_k] where h is a PSM in x, each of the g_i for i=1..(k>0) is a PSM in x, and for i < j we have g_i <= g_j under a canonical total ordering such as the Mathematica ordering. The number of positions in a PSM is the number of brackets [...] plus the number of x's.

%H Andrew Howroyd, <a href="/A280000/b280000.txt">Table of n, a(n) for n = 1..200</a>

%e Sequence of free pure symmetric multifunctions (second column) together with their numbers of positions (first column) and j-numbers (third column, see A279944 for details) begins:

%e 1 x 1

%e 3 x[x] 2

%e 4 x[x,x] 8

%e 5 x[x][x] 3

%e 5 x[x[x]] 4

%e 5 x[x,x,x] 128

%e 6 x[x,x][x] 12

%e 6 x[x][x,x] 27

%e 6 x[x,x[x]] 32

%e 6 x[x,x,x,x] 32768

%e 6 x[x[x,x]] 262144

%e 7 x[x][x][x] 5

%e 7 x[x[x]][x] 6

%e 7 x[x][x[x]] 9

%e 7 x[x[x][x]] 16

%e 7 x[x[x[x]]] 64

%e 7 x[x,x,x][x] 145

%e 7 x[x,x][x,x] 1728

%e 7 x[x,x,x[x]] 2048

%e 7 x[x][x,x,x] 2187

%e 7 x[x,x,x,x,x] 2147483648

%e 7 x[x,x[x,x]] 137438953472

%e 7 x[x[x,x,x]] 1378913...3030144

%t multing[t_,n_]:=Array[(t+#-1)/#&,n,1,Times];

%t a[n_]:=If[n===1,1,Sum[a[k]*Sum[Product[multing[a[First[s]],Length[s]],{s,Split[p]}],{p,IntegerPartitions[n-k-1]}],{k,1,n-2}]];

%t Array[a,15]

%o (PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}

%o seq(n)={my(v=[1]); for(n=2, n, my(t=EulerT(v)); v=concat(v, sum(k=1, n-2, v[k]*t[n-k-1]))); v} \\ _Andrew Howroyd_, Aug 19 2018

%Y Cf. A005043 (non-symmetric case), A279944.

%K nonn

%O 1,5

%A _Gus Wiseman_, Dec 24 2016