login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318148
Coefficients of the Omega polynomials of order 4, triangle T(n,k) read by rows with 0<=k<=n.
2
1, 0, 1, 0, -34, 35, 0, 11056, -16830, 5775, 0, -14873104, 27560780, -15315300, 2627625, 0, 56814228736, -119412815760, 84786627900, -24734209500, 2546168625, 0, -495812444583424, 1140896479608800, -948030209181000, 364143337057500, -65706427536750, 4509264634875
OFFSET
0,5
COMMENTS
The name 'Omega polynomial' is not a standard name.
FORMULA
Omega(m, n, z) = (m*n)!*[z^(n*m)] H(m, z)^x where H(m, z) = hypergeom([], [seq(i/m, i=1..m-1)], (z/m)^m). We consider here the case m = 4 (for other cases see the cross-references).
EXAMPLE
[0] [1]
[1] [0, 1]
[2] [0, -34, 35]
[3] [0, 11056, -16830, 5775]
[4] [0, -14873104, 27560780, -15315300, 2627625]
[5] [0, 56814228736, -119412815760, 84786627900, -24734209500, 2546168625]
MAPLE
# See A318146 for the missing functions.
FL([seq(CL(OmegaPolynomial(4, n)), n=0..8)]);
MATHEMATICA
(* OmegaPolynomials are defined in A318146 *)
Table[CoefficientList[OmegaPolynomial[4, n], x], {n, 0, 6}] // Flatten
PROG
(Sage)
# See A318146 for the function OmegaPolynomial.
[list(OmegaPolynomial(4, n)) for n in (0..6)]
CROSSREFS
All row sums are 1, alternating row sums (taken absolute) are A211212.
T(n,1) ~ A273352(n), T(n,n) = A025036(n).
A023531 (m=1), A318146 (m=2), A318147 (m=3), this seq (m=4).
Sequence in context: A204773 A291512 A165855 * A271984 A254756 A203462
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, Aug 22 2018
STATUS
approved