login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Coefficients of the Omega polynomials of order 4, triangle T(n,k) read by rows with 0<=k<=n.
2

%I #10 Aug 26 2018 05:31:09

%S 1,0,1,0,-34,35,0,11056,-16830,5775,0,-14873104,27560780,-15315300,

%T 2627625,0,56814228736,-119412815760,84786627900,-24734209500,

%U 2546168625,0,-495812444583424,1140896479608800,-948030209181000,364143337057500,-65706427536750,4509264634875

%N Coefficients of the Omega polynomials of order 4, triangle T(n,k) read by rows with 0<=k<=n.

%C The name 'Omega polynomial' is not a standard name.

%F Omega(m, n, z) = (m*n)!*[z^(n*m)] H(m, z)^x where H(m, z) = hypergeom([], [seq(i/m, i=1..m-1)], (z/m)^m). We consider here the case m = 4 (for other cases see the cross-references).

%e [0] [1]

%e [1] [0, 1]

%e [2] [0, -34, 35]

%e [3] [0, 11056, -16830, 5775]

%e [4] [0, -14873104, 27560780, -15315300, 2627625]

%e [5] [0, 56814228736, -119412815760, 84786627900, -24734209500, 2546168625]

%p # See A318146 for the missing functions.

%p FL([seq(CL(OmegaPolynomial(4, n)), n=0..8)]);

%t (* OmegaPolynomials are defined in A318146 *)

%t Table[CoefficientList[OmegaPolynomial[4, n], x], {n, 0, 6}] // Flatten

%o (Sage)

%o # See A318146 for the function OmegaPolynomial.

%o [list(OmegaPolynomial(4, n)) for n in (0..6)]

%Y All row sums are 1, alternating row sums (taken absolute) are A211212.

%Y T(n,1) ~ A273352(n), T(n,n) = A025036(n).

%Y A023531 (m=1), A318146 (m=2), A318147 (m=3), this seq (m=4).

%K sign,tabl

%O 0,5

%A _Peter Luschny_, Aug 22 2018