login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277576
a(1)=1; thereafter a(n) = A007916(a(n-1)).
14
1, 2, 3, 5, 7, 11, 15, 20, 26, 34, 43, 53, 63, 74, 86, 98, 111, 126, 142, 159, 177, 195, 214, 235, 258, 281, 305, 330, 356, 383, 411, 439, 468, 498, 530, 562, 595, 629, 663, 698, 734, 770, 807, 845, 883, 922, 962, 1003, 1045, 1087, 1130, 1174, 1218, 1263, 1309, 1356, 1404, 1453, 1502, 1552, 1603, 1654, 1706, 1759
OFFSET
1,2
COMMENTS
Non-perfect-powers (A007916) are numbers such that the exponents in their prime factorizations have GCD equal to 1. For each n we can construct a plane tree by replacing all positive integers at any level with their corresponding planar factorization sequences (A277564), and repeating this replacement until no numbers are left. The result will be a unique "pure" sequence or plane tree. Under this correspondence a(n) is the path tree ((((((...)))))) = string of n consecutive open brackets followed by the same number of closed brackets.
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..10000 (terms 1..2480 from Gus Wiseman)
EXAMPLE
The first forty plane trees:
() 11(((((()))))) ((()()())) (((((((()())))))))
2(()) ((()(()))) ((((()(()))))) (()((())))
3((())) (((())())) (((((())())))) ((((()))()))
(()()) ((((()())))) ((((((()())))))) 34(((((((((())))))))))
5(((()))) 15((((((())))))) (((()))()) (((())(())))
((()())) (()()()) 26((((((((())))))))) ((()())())
7((((())))) (((()(())))) ((())(())) ((((()()()))))
(()(())) ((((())()))) (((()()()))) ((((((()(())))))))
((())()) (((((()()))))) (((((()(())))))) (((((((())()))))))
(((()()))) 20(((((((()))))))) ((((((())()))))) ((((((((()()))))))))
MATHEMATICA
radicalQ[1]:=False; radicalQ[n_]:=SameQ[GCD@@FactorInteger[n][[All, 2]], 1];
rad[0]:=1; rad[n_?Positive]:=rad[n]=NestWhile[#+1&, rad[n-1]+1, Not[radicalQ[#]]&];
nn=2000; Scan[rad, Range[nn]]; NestWhileList[rad, 1, #<nn&]
PROG
(Python)
from itertools import islice
from sympy import mobius, integer_nthroot
def A277576_gen(): # generator of terms
def iterfun(f, n=0):
m, k = n, f(n)
while m != k: m, k = k, f(k)
return m
def f(x): return int(1-sum(mobius(k)*(integer_nthroot(x, k)[0]-1) for k in range(2, x.bit_length())))
a = 1
while True:
yield a
a = iterfun(lambda x:f(x)+a, a)
A277576_list = list(islice(A277576_gen(), 40)) # Chai Wah Wu, Nov 21 2024
CROSSREFS
Cf. A007916, A277564, A276625, A004111 (rooted trees), A007097 (rooted paths).
Sequence in context: A240556 A090693 A260794 * A260164 A280938 A049756
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 20 2016
EXTENSIONS
Edited by N. J. A. Sloane, Nov 09 2016
STATUS
approved