OFFSET
1,2
COMMENTS
The row lengths are A288636(n) + 1. - Gus Wiseman, Jun 12 2017
See A278028 for a version in which row n simply lists x_1, x_2, ..., x_k (omitting the initial n).
LINKS
Gus Wiseman, Table of n, a(n) for n = 1..20131
EXAMPLE
1 is represented by the empty sequence (), by convention.
Successive rows of the triangle are as follows (c(k) denotes the k-th non-prime-power, A007916(k)):
2, 1,
3, 2,
4, 1, 1,
5, 3,
6, 4, because 6 = c(4)
7, 5,
8, 1, 2, because 8 = 2^3 = c(1)^c(2)
9, 2, 1,
10, 6,
11, 7,
...
16, 1, 1, 1, because 16 = 2^4 = c(1)^4 = c(1)^(c(1)^2) = c[1]^(c[1]^c[1])
17, 12,
...
This sequence represents a bijection N -> Q where Q is the set of all finite sequences of positive integers: 1->(), 2->(1), 3->(2), 4->(1 1), 5->(3), 6->(4), 7->(5), 8->(1 2), 9->(2 1), ...
MAPLE
See link.
MATHEMATICA
nn=10000; radicalQ[1]:=False; radicalQ[n_]:=SameQ[GCD@@FactorInteger[n][[All, 2]], 1];
hyperfactor[1]:={}; hyperfactor[n_?radicalQ]:={n}; hyperfactor[n_]:=With[{g=GCD@@FactorInteger[n][[All, 2]]}, Prepend[hyperfactor[g], Product[Apply[Power[#1, #2/g]&, r], {r, FactorInteger[n]}]]];
rad[0]:=1; rad[n_?Positive]:=rad[n]=NestWhile[#+1&, rad[n-1]+1, Not[radicalQ[#]]&]; Set@@@Array[radPi[rad[#]]==#&, nn];
Flatten[Join[{#}, radPi/@hyperfactor[#]]&/@Range[nn]]
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Gus Wiseman, Oct 20 2016
EXTENSIONS
Edited by N. J. A. Sloane, Nov 09 2016
STATUS
approved