login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277562
Numbers of the form c(x_1)^c(x_2)^...^c(x_k) where each c(i) = A007916(i) is a non-perfect-power, k >= 2, and the exponents are nested from the right.
16
16, 81, 256, 512, 625, 1296, 2401, 6561, 10000, 14641, 19683, 20736, 28561, 38416, 50625, 65536, 83521, 104976, 130321, 160000, 194481, 234256, 279841, 331776, 390625, 456976, 614656, 707281, 810000, 923521, 1185921, 1336336, 1500625, 1679616, 1874161, 1953125, 2085136, 2313441, 2560000, 2825761, 3111696, 3418801
OFFSET
1,1
COMMENTS
Non-perfect-powers, or NPPs (A007916), are numbers whose prime multiplicities are relatively prime. As discussed in A007916, the expansion of a positive integer into a tower of NPPs is unique and always possible. 65536=2^2^2^2 is the smallest number that requires a tower of height more than 3.
LINKS
David A. Corneth, Table of n, a(n) for n = 1..10025 (terms <= 10^16)
R. K. Guy and J. L. Selfridge, The nesting and roosting habits of the laddered parenthesis, Amer. Math. Monthly 80 (8) (1973), 868-876.
R. K. Guy and J. L. Selfridge, The nesting and roosting habits of the laddered parenthesis (annotated cached copy)
EXAMPLE
16 = 2^2^2 81 = 3^2^2 256 = 2^2^3 512 = 2^3^2
625 = 5^2^2 1296 = 6^2^2 2401 = 7^2^2 6561 = 3^2^3
10000 = 10^2^2 14641 = 11^2^2 19683 = 3^3^2 20736 = 12^2^2
28561 = 13^2^2 38416 = 14^2^2 50625 = 15^2^2
65536 = 2^2^2^2 83521 = 17^2^2 104976 = 18^2^2 130321 = 19^2^2
160000 = 20^2^2 194481 = 21^2^2 234256 = 22^2^2 279841 = 23^2^2
331776 = 24^2^2 390625 = 5^2^3 456976 = 26^2^2 614656 = 28^2^2
707281 = 29^2^2 810000 = 30^2^2 923521 = 31^2^2 1185921 = 33^2^2
1336336 = 34^2^2 1500625 = 35^2^2 1679616 = 6^2^3 1874161 = 37^2^2
1953125 = 5^3^2 2085136 = 38^2^2 2313441 = 39^2^2 2560000 = 40^2^2
2825761 = 41^2^2 3111696 = 42^2^2 3418801 = 43^2^2 3748096 = 44^2^2
4100625 = 45^2^2 4477456 = 46^2^2 4879681 = 47^2^2 5308416 = 48^2^2
5764801 = 7^2^3 6250000 = 50^2^2 6765201 = 51^2^2 7311616 = 52^2^2
7890481 = 53^2^2 8503056 = 54^2^2 9150625 = 55^2^2 9834496 = 56^2^2
MATHEMATICA
radicalQ[1]:=False;
radicalQ[n_]:=SameQ[GCD@@FactorInteger[n][[All, 2]], 1];
hyperfactor[1]:={};
hyperfactor[n_?radicalQ]:={n};
hyperfactor[n_]:=With[{g=GCD@@FactorInteger[n][[All, 2]]}, Prepend[hyperfactor[g], Product[Apply[Power[#1, #2/g]&, r], {r, FactorInteger[n]}]]];
Select[Range[10^6], Length[hyperfactor[#]]>2&]
CROSSREFS
Cf. A007916, A001597, A164336, A164337, A106490 (Quetian Superfactorization).
Sequence in context: A250362 A217261 A372405 * A217709 A257854 A017672
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 19 2016
EXTENSIONS
Edited by N. J. A. Sloane, Nov 09 2016
Offset changed to 1 by David A. Corneth, Apr 30 2024
STATUS
approved