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(afid interesting) than that used here. The interested reader is referred to references 
[I] and [2] for original versions of these results or to [3] for a self contained treat- 
ment which generalizes them. A multi-commodity version of the quantitative Theorem 
4 also exists but is as yet unpublished. 
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THE NESTING AND ROOSTING HABITS OF  

THE LADDERED PARENTHESIS  

R. K. GUY, University of Calgary, Alberta, Canada, and J. L. SELFRIDGE, Northern  
Illinois University  

We refer to 

where there are 12 a's, as a k-level expression. It is ambiguous until the order of the 
k - 1 operations has been indicated, say by the insertion of k - 2 pairs of parentheses. 
The total number of ways of parenthesizing was found by Catalan [I] to be 

He used the elegant recurrence relation 

An interesting discussion of Catalan numbers appears in a paper [6] in this issue of 
the MONTHLY, which contains further references. 

We first consider those expressions in which the parentheses are nested. The 
number of such 12-level expressions is 2k-2, as was pointed out in Problem E 1903 
of this MONTHLY 121. This problem puts a = 2 and asks for the number of distinct 

Note reference to sequence database on page 871!
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values of the expressions for a given k. In this case the position of the innermost pair 
of parentheses is arbitrary, since 

We complete the solution by showing that for k 2 3, the 2k-3 remaining values 
are all distinct. To prove this, in the evaluation each successive operation is either a 
squaring or an exponentiation base 2. We give the value, ui, of an expression, in terms 
of its second order exponent, ei, 

Since 
2 e r  = 2 2 e i x 2  - 2 2 e i + 1  

(2 1 -
each operation is given by e,,, = ei + 1 or by ei+, = 2ei. If there is a coincidence 
of values between two different 12-level expressions, suppose that level k(>3) is the 
lowest at which such a coincidence occurs. Since the (12 - 1)-level expressions which 
gave rise to the coincidence are distinct, the equal k-level expressions have their last 
operations distinct; one an addition, the other an exponentiation. Thus e + 1 = 2f 
where e, f are the second order exponents at level k - 1. We may write e + 1= 2g + h, 
where 1 5 11 5 2g, so that the last 11 operations were additions. At level 3 the second 
order exponent is 2, so h 5 k - 3.Also f 2 12 - 2, because the second order exponent 
increases by at least 1 for each level from 3 to k - 1. So 

and we have a contradiction. Hence all values above level 3 are distinct. The same 
method shows that for a > 2 the 2k-2 expressions all have distinct values. 

We next ask how many k-level expressions there are if the k - 2 pairs of parenthe- 
ses are not necessarily nested. For k 2 4 this number is strictly less than c, since 

are equal, both having second order exponent a +  1. This shows that exponentiation 
is not completely non-associative. A further problem is to count the distinct values 
of the k-level expressions for a particular value of a. The answers will be the same 
for all a such that there is no coincidence of value. We shall see that if there is a 
coincidence of value between a kl-level expression and a k2-level expression, then a 
coiqcidence occurs at all levels from k1 + k, upwards. We assume a chosen so that 
no such coincidence occurs. Such a choice is possible since only a countable number 
are excluded. An outline of a proof of this is given by Gobel and Nederpelt [3]. 

We again work with second order exponents; now 
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so the second order exponents for level 12 are found by elementwise addition, for 
each i ,  of the pair of sets {e,), {ae')  where i takes the values l(1)k - 1, i +j = k 
and ei is a typical second order exponent for level i .  

The sets {e,) for k = 1(1)6 are: 

1 {ek} 

On comparing the sequence of cardinalities of these sets with a prepublication 
version of N. J.A. Sloane's handy table 171, we learned what we should have guessed, 
that anything which nests is often associated with trees. In fact I {e,} 1 = r,, the 
number of non-isomorphic rooted, but otherwise unlabelled trees with 12 vertices. 
Knowing this, it is not difficult to see the correspondence between such trees and the 
sets as they are generated above. Exponentiation base a corresponds to growth, 
planting or grafting; addition corresponds to branching. Figure 1 shows all rooted 
trees with k vertices, k = 1(1)6. The parentheses are all nested except where the 
second order exponents are 2a at level 5 and aZa, a" + a, a2 + a and 2a + 1at level 6. 
Methods of enumerating rooted trees are well known [4, 51. The numbers may be 
calculated from the recurrence formula 

where rk is the number of rooted trees with k vertices, the sum is taken over all 
partitions n(k - 1) of k - 1 = Cinzi into m i ( z  0) parts of size i (  2 I), and the 
binomial coefficient is the number of ways that mi rooted trees, each with i vertices, 
choien from the ri possibilities with repetitions allowed, can be attached by mi edges 
to a root to form a rooted tree with k vertices. The numbers for k = 1(1)12 are: 
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In [5] the table is extended to k = 26. 
To find the number of distinct values of the r, expressions, when a takes a par- 

ticular numerical value, is a more complicated problem. In the trivial cases a = 1 
(or - I), only the value 1 (or - 1) occurs at each level. If as usual 0' = 1, then 
for a = 0 the values are 0 , l  for k = 1,2 and both 0 and 1 for k >= 3. We defer 
consideration of a = 2, which initiated our discussion, since it exhibits a special 
feature. We deal with a = 3, which will also serve as a model for larger integer 
values. 

For k = l ,  ... ,6 ,  the numerical values of the second order exponents, when a=3, are 

I 

The semi-colons in this table and in the earlier one separate the contributions 
from the various partitions of k - 1 in the formula for r,. So far the 1,1,2,4,9,20 
values are distinct at any one level, but the value 3 occurs at both levels 3 and 4; 
27 and 4 occur at levels 4 and 5; and 327, 81, 28, 6 and 5 occur at levels 5 and 6. 
Note that the corresponding trees are those marked a and 3; a", a + 1 and a3 ,4 ;  
aaa, a"", a a  + 1,2a, a + 2 and a"', a4, a3  + 1, a + 3,5. They each arise from 
replacing the (sub)tree a with 3 vertices by the (sub)tree 3 with 4 vertices. Coincidences 
in value at the same level will occur whenever we have a tree containing tree a and' 
tree 3 as disjoint subtrees, which yields a different tree when these two subtrees are 
interchanged. More generally, for any integer a >= 3, the first coincidence in value, 
and the unique one at that level, occurs at level a + 4, the trees being those in Figure 2 

They are obtained by grafting trees a and 1 + 1 + ... + 1 ( = a), in either order, 
onto the two vertices of tree 1. To find all the coincidences at level a + 5 (i.e. level 
8 if a = 3), we graft trees a and 1+ 1 + ... + 1 in every possible way onto two 
inequivalent vertices of each rooted tree with 3 vertices. Figure 3 exhibits the 4 ways 
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with pairs of vertices labelled A, A. At level a + 6 there are 16 coincidences, illustrated 
in Figure 4 and marked with the values of a = 3. More generally, the number of 
coincidences at level k would be the number of rooted trees with k - a - 2 vertices, 
with 2 inequivalent ones having indistinguishable labels. However, there are two 
further complications. The first is exhibited at level 10 for a = 3. If we start from 
the a-tree (Figure 5) and graft on a, a, 3 at its 3 vertices, we obtain three trees, each 
of value 330 + 3: there are 2 duplicates, where we would be counting 3. We must 
use the inclusion-exclusion principle and make allowance for the number of rooted 
trees with indistinguishable labels on 3 inequivalent vertices. For level 11 and a = 3 
this amounts to 10 cases (Figure 6), the tenth arising from grafting a, 3, 3 onto the 
a-tree. The second complication is that new coincidences arise wherever a new power 

of a occurs. For a = 3 this next happens at level 11 from the equality of a 2  at level 
4 with a + a + a at level 7 (Figure 7). Grafting these in either order onto the vertices 
of the 1-tree gives 2 non-isomorphic trees, each with 11 vertices and value 39 + 9. 
More generally, this first occurs at level 2a + 5. 
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For larger values of a, these events occur at correspondingly higher levels, so we 
are able to list the number of distinct values for k = 1(1)11 and a 2 3. 

For k 5 a + 3, this number is the same as r, .  For lc = a + 4, a + 5, a + 6, it is 
r ,  - 1, r ,  - 4 and r ,  - 16. Thereafter the extra complications have to be taken into 
account. A more powerful enumeration could be made by an application of the 
Redfield-P6lya theorem, but technical difficulties will still arise. 

We can answer the converse question: at what levels and with what frequencies 
does a particular value occur? Partition the value into parts which are powers of a ;  
similarly partition all exponents. Do this in every possible way. For example, if 
a = 3 then 28 can be expressed in 24 ways as 

so that 28 occurs (as a second order exponent) just at levels 5, 6, 11, 14-17, 17-23 
and 20-29, i.e., it is duplicated at levels 17 and 20 through 23. 

Finally we consider a = 2. Here there is an immediate coincidence at level 3, 
as we noted at the outset. In Figure 1, the a-tree and the 2-tree, have the same value. 
So we eliminate the former, and 'prune' all rooted trees, in the sense that wherever 
the a-tree appears, we replace it by the 2-tree. Such trees were called 'trimmed' by 
Gobel and Nederpelt [3]. As they pointed out, pruned trees can be enumerated by 
the same recurrence as for r,, except that as we have replaced all a-trees by (1 $ 1)-
trees, we have no contribution to any partition which contains a part of size 2. 
The corresponding numbers, s,  ,of pruned trees with k vertices, are: 

k l , I 2 3 4 5 6 7 8 9 10 11 12 ------ ~-. 

. r k  1 (I) 1 2 4 8 17 36 79 175 395 899 2074I 
The parentheses mean that s ,  should be taken as zero in applying the recurrence 
relation. 

13 
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For a = 2, the first few values of the second order exponents are: 

The first coincidence is 4, at levels 4 and 5, so the first coincidence at the same 
level (above level 3) is 24 + 4 = 20 at level 9 (see Figure 8). Complications of the 
first kind occur first at level 4 + 4 + 5 = 13, and of the second kind at level 5 + 7 = 12 
from a 3  = 2a2 (Figure 9). Note that in using Figure 4 to count duplicates at level 11 
we ignore the 6th and 15th trees, since even after grafting they would contain an 
a-tree. But at this level there are two duplicates of the second kind, since (see Fig- 
ure lo), 

a2a3  + 1 = 2aaa 2  and a9 = 2aa3. 

This gives the following numbers of distinct values of k-level expressions with a = 2. 

There seems to be no simple characterization of what we might call exponential 
numbers, which lead to coincidences of value of k-level expressions. The coincidence 
may be between diirerent levels in the first instance, but this will induce coincidences 
at the same level for all sufficiently large k, and the number of distinct values will be 
less than r, for such k. The exponential numbers include all algebraic numbers, but 
do not form a field. 
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We list the numbers of distinct values of k-level expressions for the algebraic 
numbers 3 (1 + Js> and JT and for the transcendental positive root of a" = 2. 

6 7 8 9l 1 2 3 4 5 
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CORRECTION TO "THE MATHEMATICAL SOCIETIES AND ASSOCIATIONS  
IN THE UNITED KINGDOM"  

THOMASWILLMORE,University of Durham, England 

In this MONTHLY 79 (1972) 985-989, I stated that reviews of new mathematical 
books appear in the Journal of the London Mathematical Society. This used to be 
the case, but the London Mathematical Society now produces a very good journal, 
the Bulletin, which contains interesting information, lengthy expository articles and 
also the book reviews which previously would have appeared in the Journal. 

I omitted all reference to the Edinburgh Mathematical Society, a Mathematical 
Sociefy of long standing, which, although primarily concerned with mathematical 
research, has also had considerable influence on mathematics teaching. This justly 
provoked criticism from its President, Professor W. D. Collins, who incidentally 
extends a warm invitation to all members of the Mathematical Association of America 
to attend meetings of the Edinburgh Mathematical Society if they are able to do so. 
At least one Englishman will no longer identify "England" and "United Kingdom" 
in the future! !! 


