login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A017672
Denominator of sum of -4th powers of divisors of n.
3
1, 16, 81, 256, 625, 648, 2401, 4096, 6561, 5000, 14641, 3456, 28561, 19208, 50625, 65536, 83521, 104976, 130321, 80000, 194481, 117128, 279841, 165888, 390625, 228488, 531441, 43904, 707281, 202500, 923521, 1048576, 1185921, 39304, 1500625, 559872, 1874161
OFFSET
1,2
COMMENTS
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001
LINKS
FORMULA
Denominators of coefficients in expansion of Sum_{k>=1} x^k/(k^4*(1 - x^k)). - Ilya Gutkovskiy, May 24 2018
EXAMPLE
1, 17/16, 82/81, 273/256, 626/625, 697/648, 2402/2401, 4369/4096, 6643/6561, 5321/5000, ...
MATHEMATICA
Table[Denominator[DivisorSigma[-4, n]], {n, 50}] (* Vladimir Joseph Stephan Orlovsky, Jul 21 2011 *)
Table[Denominator[DivisorSigma[4, n]/n^4], {n, 1, 40}] (* G. C. Greubel, Nov 08 2018 *)
PROG
(PARI) vector(40, n, denominator(sigma(n, 4)/n^4)) \\ G. C. Greubel, Nov 08 2018
(Magma) [Denominator(DivisorSigma(4, n)/n^4): n in [1..40]]; // G. C. Greubel, Nov 08 2018
CROSSREFS
Cf. A017671.
Sequence in context: A277562 A217709 A257854 * A055013 A080150 A000583
KEYWORD
nonn,frac
STATUS
approved