login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A017670
Denominator of sum of -3rd powers of divisors of n.
3
1, 8, 27, 64, 125, 6, 343, 512, 729, 500, 1331, 432, 2197, 343, 375, 4096, 4913, 648, 6859, 4000, 1323, 2662, 12167, 384, 15625, 8788, 19683, 2744, 24389, 125, 29791, 32768, 3993, 19652, 6125, 46656, 50653, 13718, 59319, 6400, 68921, 147, 79507, 21296, 10125
OFFSET
1,2
COMMENTS
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001
LINKS
FORMULA
Denominator of Sum_{d|n} 1/d^3.
Denominators of coefficients in expansion of Sum_{k>=1} x^k/(k^3*(1 - x^k)). - Ilya Gutkovskiy, May 24 2018
EXAMPLE
1, 9/8, 28/27, 73/64, 126/125, 7/6, 344/343, 585/512, 757/729, 567/500, 1332/1331, 511/432, ...
MATHEMATICA
Table[Denominator[DivisorSigma[-3, n]], {n, 50}] (* Vladimir Joseph Stephan Orlovsky, Jul 21 2011 *)
Table[Denominator[DivisorSigma[3, n]/n^3], {n, 1, 40}] (* G. C. Greubel, Nov 08 2018 *)
PROG
(PARI) vector(40, n, denominator(sigma(n, 3)/n^3)) \\ G. C. Greubel, Nov 08 2018
(Magma) [Denominator(DivisorSigma(3, n)/n^3): n in [1..40]]; // G. C. Greubel, Nov 08 2018
CROSSREFS
Cf. A017669.
Sequence in context: A211641 A062686 A093322 * A353621 A126200 A213491
KEYWORD
nonn,frac
STATUS
approved