OFFSET
1,2
COMMENTS
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..10000
FORMULA
Denominator of Sum_{d|n} 1/d^3.
Denominators of coefficients in expansion of Sum_{k>=1} x^k/(k^3*(1 - x^k)). - Ilya Gutkovskiy, May 24 2018
EXAMPLE
1, 9/8, 28/27, 73/64, 126/125, 7/6, 344/343, 585/512, 757/729, 567/500, 1332/1331, 511/432, ...
MATHEMATICA
Table[Denominator[DivisorSigma[-3, n]], {n, 50}] (* Vladimir Joseph Stephan Orlovsky, Jul 21 2011 *)
Table[Denominator[DivisorSigma[3, n]/n^3], {n, 1, 40}] (* G. C. Greubel, Nov 08 2018 *)
PROG
(PARI) vector(40, n, denominator(sigma(n, 3)/n^3)) \\ G. C. Greubel, Nov 08 2018
(Magma) [Denominator(DivisorSigma(3, n)/n^3): n in [1..40]]; // G. C. Greubel, Nov 08 2018
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
STATUS
approved