login
A213491
Number of (w,x,y) with all terms in {0,...,n} and the numbers w,x,y,|w-x|,|x-y| not distinct.
2
1, 8, 27, 64, 125, 204, 305, 420, 569, 714, 909, 1096, 1327, 1550, 1833, 2086, 2411, 2706, 3071, 3402, 3815, 4176, 4635, 5038, 5533, 5972, 6519, 6988, 7577, 8088, 8717, 9264, 9941, 10518, 11241, 11860, 12619, 13274, 14085, 14770, 15623
OFFSET
0,2
COMMENTS
For a guide to related sequences, see A212959.
FORMULA
a(n) = a(n-2) + a(n-3) + a(n-4) - a(n-5) - a(n-6) - a(n-7) + a(n-9).
G.f.: (1 + 8*x + 26*x^2 + 55*x^3 + 89*x^4 + 106*x^5 + 98*x^6 + 63*x^7 + 34*x^8)/(1 - x^2 - x^3 - x^4 + x^5 + x^6 + x^7 - x^9).
a(n) = (n+1)^3 - A213490(n).
MATHEMATICA
t = Compile[{{n, _Integer}}, Module[{s = 0}, (Do[If[Length[Union[{w, x, y, Abs[w - x], Abs[x - y]}]] < 5, s = s + 1], {w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
m = Map[t[#] &, Range[0, 60]]
(* or *)
LinearRecurrence[{0, 1, 1, 1, -1, -1, -1, 0, 1}, {1, 8, 27, 64, 125, 204, 305, 420, 569}, 60]
CROSSREFS
Sequence in context: A017670 A353621 A126200 * A276919 A076989 A270437
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jun 13 2012
STATUS
approved