login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276919
Number of solutions to x^3 + y^3 + z^3 + t^3 == 1 (mod n) for 1 <= x, y, z, t <= n.
2
1, 8, 27, 64, 125, 216, 336, 512, 1296, 1000, 1331, 1728, 1794, 2688, 3375, 4096, 4913, 10368, 7410, 8000, 9072, 10648, 12167, 13824, 15625, 14352, 34992, 21504, 24389, 27000, 30225, 32768, 35937, 39304, 42000, 82944, 48396, 59280, 48438, 64000, 68921, 72576, 77529, 85184, 162000, 97336
OFFSET
1,2
COMMENTS
It appears that a(n) = n^3 for n in A088232. See also A066498. - Michel Marcus, Oct 11 2016
MATHEMATICA
JJJ[4, n, lam] = Sum[If[Mod[a^3 + b^3 + c^3 + d^3, n] == Mod[lam, n], 1, 0], {d, 0, n - 1}, {a, 0, n - 1}, {b, 0, n - 1}, {c, 0 , n - 1}]; Table[JJJ[4, n, 1], {n, 1, 50}]
PROG
(PARI) a(n) = sum(x=1, n, sum(y=1, n, sum(z=1, n, sum(t=1, n, Mod(x, n)^3 + Mod(y, n)^3 + Mod(z, n)^3 + Mod(t, n)^3 == 1)))); \\ Michel Marcus, Oct 11 2016
(PARI) qperms(v) = {my(r=1, t); v = vecsort(v); for(i=1, #v-1, if(v[i]==v[i+1], t++, r*=binomial(i, t+1); t=0)); r*=binomial(#v, t+1)}
a(n) = {my(t=0); forvec(v=vector(4, i, [1, n]), if(sum(i=1, 4, Mod(v[i], n)^3)==1, print1(v", "); t+=qperms(v)), 1); t} \\ David A. Corneth, Oct 11 2016
(Python)
def A276919(n):
ndict = {}
for i in range(n):
i3 = pow(i, 3, n)
for j in range(i+1):
j3 = pow(j, 3, n)
m = (i3+j3) % n
if m in ndict:
if i == j:
ndict[m] += 1
else:
ndict[m] += 2
else:
if i == j:
ndict[m] = 1
else:
ndict[m] = 2
count = 0
for i in ndict:
j = (1-i) % n
if j in ndict:
count += ndict[i]*ndict[j]
return count # Chai Wah Wu, Jun 06 2017
KEYWORD
nonn,mult
AUTHOR
STATUS
approved