login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A254073 Number of solutions to x^3 + y^3 + z^3 == 1 (mod n) for 1 <= x, y, z <= n. 3
1, 4, 9, 16, 25, 36, 90, 64, 162, 100, 121, 144, 252, 360, 225, 256, 289, 648, 468, 400, 810, 484, 529, 576, 625, 1008, 1458, 1440, 841, 900, 1143, 1024, 1089, 1156, 2250, 2592, 1602, 1872, 2268, 1600, 1681, 3240, 2115, 1936, 4050, 2116, 2209, 2304, 4410 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

It appears that a(n) = n^2 for n in A088232 (numbers n such that 3 does not divide phi(n)) and that a(n) != n^2 for n in A066498 (numbers n such that 3 divides phi(n)). - Michel Marcus, Mar 13 2015

It appears that a(p) != p^2 for primes in A002476 (primes of form 6m + 1). - Michel Marcus, Mar 13 2015

LINKS

Chai Wah Wu, Table of n, a(n) for n = 1..10000

MATHEMATICA

a[n_] := Sum[ If[ Mod[x^3 + y^3 + z^3, n] == 1, 1, 0], {x, n}, {y, n}, {z, n}]; a[1]=1; Table[a[n], {n, 2, 22}]

PROG

(PARI) a(n) = {nb = 0; for (x=1, n, for (y=1, n, for (z=1, n, if ((Mod(x^3, n) + Mod(y^3, n) + Mod(z^3, n)) % n == Mod(1, n), nb ++); ); ); ); nb; } \\ Michel Marcus, Mar 11 2015

(PARI) a(n)={my(p=Mod(sum(i=0, n-1, x^(i^3%n)), 1-x^n)^3); polcoeff(lift(p), 1%n)} \\ Andrew Howroyd, Jul 18 2018

(Python)

def A254073(n):

    ndict = {}

    for i in range(n):

        m = pow(i, 3, n)

        if m in ndict:

            ndict[m] += 1

        else:

            ndict[m] = 1

    count = 0

    for i in ndict:

        ni = ndict[i]

        for j in ndict:

            k = (1-i-j) % n

            if k in ndict:

                count += ni*ndict[j]*ndict[k]

    return count # Chai Wah Wu, Jun 06 2017

CROSSREFS

Cf. A087412.

Sequence in context: A062295 A238203 A068802 * A075056 A022779 A265078

Adjacent sequences:  A254070 A254071 A254072 * A254074 A254075 A254076

KEYWORD

nonn,mult

AUTHOR

José María Grau Ribas, Jan 25 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 25 18:51 EDT 2021. Contains 347659 sequences. (Running on oeis4.)