login
A062295
A B_2 sequence: a(n) is the smallest square such that pairwise sums of not necessarily distinct elements are all distinct.
4
1, 4, 9, 16, 25, 36, 64, 81, 100, 169, 256, 289, 441, 484, 576, 625, 841, 1089, 1296, 1444, 1936, 2025, 2401, 2601, 3136, 4225, 4356, 4624, 5329, 5476, 5776, 6084, 7569, 9025, 10201, 11449, 11664, 12321, 12996, 13456, 14400, 16129, 17956, 20164, 22201
OFFSET
1,2
LINKS
Eric Weisstein's World of Mathematics, B2-Sequence
EXAMPLE
36 is in the sequence since the pairwise sums of {1, 4, 9, 16, 25, 36} are all distinct: 2, 5, 8, 10, 13, 17, 18, 20, 25, 26, 29, 32, 34, 37, 40, 41, 45, 50, 52, 61, 72.
49 is not in the sequence since 1 + 49 = 25 + 25.
PROG
(Python)
from itertools import count, islice
def A062295_gen(): # generator of terms
aset1, aset2, alist = set(), set(), []
for k in (n**2 for n in count(1)):
bset2 = {k<<1}
if (k<<1) not in aset2:
for d in aset1:
if (m:=d+k) in aset2:
break
bset2.add(m)
else:
yield k
alist.append(k)
aset1.add(k)
aset2 |= bset2
A062295_list = list(islice(A062295_gen(), 30)) # Chai Wah Wu, Sep 05 2023
KEYWORD
nonn
AUTHOR
Labos Elemer, Jul 02 2001
EXTENSIONS
Edited, corrected and extended by Klaus Brockhaus, Sep 24 2007
STATUS
approved