login
A133743
a(n) is the smallest positive square such that pairwise sums of distinct elements are all distinct.
4
1, 4, 9, 16, 25, 36, 49, 100, 144, 169, 225, 256, 361, 441, 484, 625, 729, 784, 1156, 1521, 1600, 1764, 2401, 2704, 3364, 4096, 4225, 4356, 4900, 5184, 5929, 6889, 7921, 8836, 9216, 9409, 10404, 11881, 13689, 13924, 14161, 18496, 19321, 20449, 21316
OFFSET
1,2
LINKS
Eric Weisstein's World of Mathematics, B2-Sequence
EXAMPLE
49 is in the sequence since the pairwise sums of distinct elements of {1, 4, 9, 16, 25, 36, 49} are all distinct: 5, 10, 13, 17, 20, 25, 26, 29, 34, 37, 40, 41, 45, 50, 52, 53, 58, 61, 65, 74, 85.
64 is not in the sequence since 1 + 64 = 16 + 49.
PROG
(Python)
from itertools import count, islice
def A133743_gen(): # generator of terms
aset2, alist = set(), []
for k in map(lambda x:x**2, count(1)):
bset2 = set()
for a in alist:
if (b:=a+k) in aset2:
break
bset2.add(b)
else:
yield k
alist.append(k)
aset2.update(bset2)
A133743_list = list(islice(A133743_gen(), 30)) # Chai Wah Wu, Sep 11 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Klaus Brockhaus, Sep 24 2007
STATUS
approved