login
A030288
a(n+1) is smallest square > a(n) having no digits in common with a(n), with a(0) = 0.
3
0, 1, 4, 9, 16, 25, 36, 49, 81, 225, 361, 400, 529, 676, 841, 900, 1156, 2209, 3136, 4225, 6889, 7225, 8100, 24336, 58081, 69696, 70225, 84681, 90000, 111556, 200704, 316969, 407044, 511225, 608400, 923521, 4000000, 5112121, 6036849
OFFSET
0,3
COMMENTS
It appears that from a(102) on, there is a 4-periodic pattern: a(4k) ~ 3*10^(k-3) a(4k+1) ~ 6.1111...*10^(k-3), a(4k+2) ~ 7*10^(k-3), a(4k+3) ~ 8.1111...*10^(k-3), where ~ means the next larger square which has only digits {0, 3, 4, 5, 7} for even-indexed terms, or {1, 2, 6, 8, 9} for odd-indexed terms. - M. F. Hasler, Nov 12 2017
LINKS
FORMULA
a(n) = A030287(n)^2. - Michel Marcus, Nov 03 2017
MATHEMATICA
FromDigits /@ NestList[Block[{k = Sqrt@ FromDigits@ # + 1, m}, While[ContainsAny[#, Set[m, IntegerDigits[k^2]]], k++]; m] &, {0}, 38] (* Michael De Vlieger, Nov 02 2017 *)
ssga[a_]:=Module[{k=Floor[Sqrt[a]]+1}, While[Length[Intersection[IntegerDigits[k^2], IntegerDigits[ a]]]> 0, k++]; k^2]; NestList[ssga, 0, 40] (* Harvey P. Dale, Sep 10 2024 *)
PROG
(PARI) next_A030288(n, D(n)=Set(digits(n)), S=D(n))={for(k=sqrtint(n)+1, oo, #setintersect(D(k^2), S)||return(k^2))} \\ Could be made more efficient by implementing the observed patterns, in particular for n >= 104. - M. F. Hasler, Nov 12 2017
CROSSREFS
KEYWORD
nonn,base
STATUS
approved