login
A030098
Squares whose digits are all even.
11
0, 4, 64, 400, 484, 4624, 6084, 6400, 8464, 26244, 28224, 40000, 40804, 48400, 68644, 88804, 228484, 242064, 248004, 446224, 462400, 608400, 640000, 806404, 824464, 846400, 868624, 2022084, 2226064, 2244004, 2624400, 2822400, 2862864, 4000000, 4008004, 4080400
OFFSET
1,2
COMMENTS
On the other hand, the only squares whose digits are all odd are 1 and 9, because the tens digit of all odd squares >= 25 (A016754) is always even. - Bernard Schott, Jan 24 2023
LINKS
Michael S. Branicky, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
FORMULA
a(n) = A030097(n)^2. - Michel Marcus, Apr 03 2014
MATHEMATICA
t = {}; n = -1; While[Length[t] < 1000, n++; If[Intersection[IntegerDigits[n^2], {1, 3, 5, 7, 9}] == {}, AppendTo[t, n^2]]] (* T. D. Noe, Apr 03 2014 *)
Select[Range[0, 3000]^2, AllTrue[IntegerDigits[#], EvenQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Feb 19 2016 *)
PROG
(Python)
from math import isqrt
def ok(sq): return all(d in "02468" for d in str(sq))
def aupto(limit):
sqs = (i*i for i in range(0, isqrt(limit)+1, 2))
return list(filter(ok, sqs))
print(aupto(4080400)) # Michael S. Branicky, May 20 2021
CROSSREFS
Subsequence of A075787.
Sequence in context: A249483 A165516 A064935 * A087045 A169801 A103751
KEYWORD
nonn,base
STATUS
approved