login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A169801
a(n) = ((n-1)^2*n^2*(n+1)^2)/6 - 2*Sum_{l=2..n}Sum_{k=2..n}(n-k+1)*(n-l+1)*(k-1)*(l-1).
0
0, 0, 4, 64, 400, 1600, 4900, 12544, 28224, 57600, 108900, 193600, 327184, 529984, 828100, 1254400, 1849600, 2663424, 3755844, 5198400, 7075600, 9486400, 12545764, 16386304, 21160000, 27040000, 34222500, 42928704, 53406864, 65934400, 80820100, 98406400
OFFSET
0,3
COMMENTS
Created in an attempt to repair a formula in A045996, which however turned out to be correct after all.
FORMULA
a(n) = A099764(n-1) - 2*Sum_{l=2..n}Sum_{k=2..n}(n-k+1)*(n-l+1)*(k-1)*(l-1) = A099764(n-1)/9 = 4*A001249(n-2). - R. J. Mathar, May 23 2010
G.f.: 4*x^2*(1+x)*(x^2+8*x+1)/(1-x)^7. - R. J. Mathar, May 23 2010
MATHEMATICA
f[n_] := ((n - 1)^2*n^2*(n + 1)^2)/6 - 2*Sum[(n - k + 1)*(n - l + 1)*(k - 1) (l - 1), {k, 2, n}, {l, 2, n}]; Array[f, 31] (* Robert G. Wilson v, May 23 2010 *)
CROSSREFS
Sequence in context: A064935 A030098 A087045 * A103751 A053959 A343725
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, May 19 2010, May 22 2010
STATUS
approved