OFFSET
0,3
COMMENTS
From a(24) = 10^6 on, we have a(2k) = 10^(k-6) and a(2k+1) ~ c*a(2k) with c = (20/9)^(1/3) = 1.30495588... Indeed, a(2k)^3 = 1000^(k-6) has then only digits 0 and 1, and the next term must have a cube >= 2.2222...*1000^(k-6), so a(2k+1) will be the cube root of the next larger cube with no digit 0 and 1. - M. F. Hasler, Nov 12 2017
LINKS
David W. Wilson, Table of n, a(n) for n = 0..90
FORMULA
a(n) = A030289(n)^(1/3). - David W. Wilson, Nov 08 2017
For k >= 12, a(2k) = 10^(k-6), and a(2k+1) > c*a(2k) with approximate equality, where c = (20/9)^(1/3) = 1.30495588... - M. F. Hasler, Nov 12 2017
EXAMPLE
a(5) = 5 and 5^3 = 125 has no digit in common with the cube of a(4) = 4, 4^3 = 64.
But a(6) cannot be equal to 6, because 6^3 = 216 has digits '1' and '2' in common with 5^3 = 125.
PROG
(PARI) next_A030290(n, S=Set(digits(n^3)))={if(n>18e4, S[1]&&return(10^logint(n<<3, 10)); n\=sqrtn(.45, 3)); for(k=n+1, oo, #setintersect(Set(digits(k^3)), S)||return(k))} \\ M. F. Hasler, Nov 12 2017
print1(a=0); for(i=1, 99, print1(", "a=next_A030290(a))) \\ M. F. Hasler, Nov 08 2017
CROSSREFS
KEYWORD
nonn,base
AUTHOR
STATUS
approved