login
A019544
Squares whose digits are squares.
10
0, 1, 4, 9, 49, 100, 144, 400, 441, 900, 1444, 4900, 9409, 10000, 10404, 11449, 14400, 19044, 40000, 40401, 44100, 44944, 90000, 144400, 419904, 490000, 491401, 904401, 940900, 994009, 1000000, 1004004, 1014049, 1040400, 1100401, 1144900, 1440000, 1904400
OFFSET
1,3
COMMENTS
Are there infinitely many terms not divisible by 100? - Charles R Greathouse IV, Sep 19 2012
Yes. For example, the squares of the type (k*10^m+1)^2, where m>0 and k = 2, 70, 970, 202470000 or m>1 and k = 10^m-3, belong to the sequence. - Bruno Berselli, Jan 10 2013
LINKS
Sylvester Smith, A Set of Conjectures on Smarandache Sequences, Bulletin of Pure and Applied Sciences, (Bombay, India), Vol. 15 E (No. 1), 1996, pp. 101-107.
Eric Weisstein's World of Mathematics, Smarandache Sequences
FORMULA
a(n) = A285550(n)^2. - Alois P. Heinz, Apr 21 2017
MAPLE
filter:= n -> convert(convert(n, base, 10), set) subset {0, 1, 4, 9}:
select(filter, [seq(n^2, n=1..10^5)]); # Robert Israel, Aug 14 2018
PROG
(Magma) [n^2: n in [0..2000] | forall{d: d in Intseq(n^2) | d in [0, 1, 4, 9]}]; // Bruno Berselli, Jan 10 2013
CROSSREFS
Cf. A285550.
Sequence in context: A368337 A268099 A061867 * A053059 A006716 A068809
KEYWORD
nonn,base
AUTHOR
R. Muller
EXTENSIONS
Offset changed to 1 by Alois P. Heinz, Apr 21 2017
STATUS
approved