login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A019546
Primes whose digits are primes.
105
2, 3, 5, 7, 23, 37, 53, 73, 223, 227, 233, 257, 277, 337, 353, 373, 523, 557, 577, 727, 733, 757, 773, 2237, 2273, 2333, 2357, 2377, 2557, 2753, 2777, 3253, 3257, 3323, 3373, 3527, 3533, 3557, 3727, 3733, 5227, 5233, 5237, 5273, 5323, 5333, 5527, 5557
OFFSET
1,1
COMMENTS
Intersection of A046034 and A000040; A055642(a(n)) = A193238(a(n)). - Reinhard Zumkeller, Jul 19 2011
Ribenboim mentioned in 2000 the following number as largest known term: 72323252323272325252 * (10^3120 - 1) / (10^20 - 1) + 1. It has 3120 digits, and was discovered by Harvey Dubner in 1992. Larger terms are 22557252272*R(15600)/R(10) and 2255737522*R(15600) where R(n) denotes the n-th repunit (see A002275): Both have 15600 digits and were found in 2002, also by Dubner (see Weisstein link). David Broadhurst reports in 2003 an even longer number with 82000 digits: (10^40950+1) * (10^20055+1) * (10^10374 + 1) * (10^4955 + 1) * (10^2507 + 1) * (10^1261 + 1) * (3*R(1898) + 555531001*10^940 - R(958)) + 1, see link. - Reinhard Zumkeller, Jan 13 2012
The smallest and largest primes that use exactly once the four prime decimal digits are respectively a(27)= 2357 and a(54) = 7523. - Bernard Schott, Apr 27 2023
REFERENCES
Paulo Ribenboim, Prime Number Records (Chap 3), in 'My Numbers, My Friends', Springer-Verlag 2000 NY, page 76.
LINKS
József Bölcsföldi and György Birkás, Golden ratio prime numbers, International Journal of Engineering Science Invention (2018) Vol. 6 Issue 12, 82-85.
David Broadhurst: primeform, 82000-digit prime with all digits prime [Broken link]
David Broadhurst, 82000-digit prime with all digits prime, digest of 2 messages in primeform Yahoo group, Oct 20 - Oct 25, 2003.
Chris K. Caldwell and G. L. Honaker, Jr., 2357, Prime Curios!
Chris K. Caldwell and G. L. Honaker, Jr., 7523, Prime Curios!
H. Ibstedt, A Few Smarandache Integer Sequences, Smarandache Notions Journal, Vol. 8, No. 1-2-3, 1997, pp. 171-183.
Sylvester Smith, A Set of Conjectures on Smarandache Sequences, Bulletin of Pure and Applied Sciences, (Bombay, India), Vol. 15 E (No. 1), 1996, pp. 101-107.
Eric Weisstein's MathWorld Headline News, Two Gigantic Primes with Prime Digits Found
Eric Weisstein's World of Mathematics, Smarandache Sequences
MATHEMATICA
Select[Prime[Range[700]], Complement[IntegerDigits[#], {2, 3, 5, 7}] == {} &] (* Alonso del Arte, Aug 27 2012 *)
Select[Prime[Range[700]], AllTrue[IntegerDigits[#], PrimeQ] &] (* Ivan N. Ianakiev, Jun 23 2018 *)
PROG
(PARI) is_A019546(n)=isprime(n) & !setminus(Set(Vec(Str(n))), Vec("2357")) \\ M. F. Hasler, Jan 13 2012
(PARI) print1(2); for(d=1, 4, forstep(i=1, 4^d-1, [1, 1, 2], p=sum(j=0, d-1, 10^j*[2, 3, 5, 7][(i>>(2*j))%4+1]); if(isprime(p), print1(", "p)))) \\ Charles R Greathouse IV, Apr 29 2015
(Haskell)
a019546 n = a019546_list !! (n-1)
a019546_list = filter (all (`elem` "2357") . show )
([2, 3, 5] ++ (drop 2 a003631_list))
-- Or, much more efficient:
a019546_list = filter ((== 1) . a010051) $
[2, 3, 5, 7] ++ h ["3", "7"] where
h xs = (map read xs') ++ h xs' where
xs' = concat $ map (f xs) "2357"
f xs d = map (d :) xs
-- Reinhard Zumkeller, Jul 19 2011
(Magma) [p: p in PrimesUpTo(5600) | Set(Intseq(p)) subset [2, 3, 5, 7]]; // Bruno Berselli, Jan 13 2012
(Python)
from itertools import product
from sympy import isprime
A019546_list = [2, 3, 5, 7]+[p for p in (int(''.join(d)+e) for l in range(1, 5) for d in product('2357', repeat=l) for e in '37') if isprime(p)] # Chai Wah Wu, Jun 04 2021
CROSSREFS
Cf. A020463 (subsequence).
A093162, A093164, A093165, A093168, A093169, A093672, A093674, A093675, A093938 and A093941 are subsequences. - XU Pingya, Apr 20 2017
Sequence in context: A074491 A154385 A125525 * A104179 A096148 A211681
KEYWORD
nonn,base
AUTHOR
R. Muller
EXTENSIONS
More terms from Cino Hilliard, Aug 06 2006
Thanks to Charles R Greathouse IV and T. D. Noe for massive editing support.
STATUS
approved