|
|
A096148
|
|
Perfect zip primes (i.e., order-k zip primes, with k = number of digits).
|
|
0
|
|
|
2, 3, 5, 7, 23, 37, 53, 73, 223, 233, 337, 523, 733, 773, 5233, 33377, 72733, 272333, 572333, 5222333
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
A k-th order zip prime, where k <= number of digits, is one which, for all of each set k, form smaller primes when it is "zipped" into k parts by alternately distributing the leftmost digit to the parts. Thus 244712331139 is a 7th-order zip prime since we have:
k=1 244712331139
k=2 241313
... 472319
k=3 2731
... 4133
... 4219
k=4 211
... 421
... 433
... 739
k=5 223
... 439
... 43
... 71
... 11
k=6 23
... 43
... 41
... 71
... 13
... 19
k=7 23
... 41
... 41
... 73
... 19
... 2
... 3
all primes.
|
|
LINKS
|
Table of n, a(n) for n=1..20.
C. Rivera, Zip primes
W. Schneider, Zip Primes
|
|
CROSSREFS
|
Sequence in context: A125525 A019546 A104179 * A211681 A124674 A177061
Adjacent sequences: A096145 A096146 A096147 * A096149 A096150 A096151
|
|
KEYWORD
|
fini,full,nonn,base
|
|
AUTHOR
|
Lekraj Beedassy, Jul 27 2004
|
|
STATUS
|
approved
|
|
|
|