|
|
A002275
|
|
Repunits: (10^n - 1)/9. Often denoted by R_n.
|
|
1161
|
|
|
0, 1, 11, 111, 1111, 11111, 111111, 1111111, 11111111, 111111111, 1111111111, 11111111111, 111111111111, 1111111111111, 11111111111111, 111111111111111, 1111111111111111, 11111111111111111, 111111111111111111, 1111111111111111111, 11111111111111111111
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
R_n is a string of n 1's.
Base-4 representation of Jacobsthal bisection sequence A002450. E.g., a(4)= 1111 because A002450(4)= 85 (in base 10) = 64 + 16 + 4 + 1 = 1*(4^3) + 1*(4^2) + 1*(4^1) + 1. - Paul Barry, Mar 12 2004
Except for the first two terms, these numbers cannot be perfect squares, because x^2 != 11 (mod 100). - Zak Seidov, Dec 05 2008
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=10, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n)=det(A). - Milan Janjic, Feb 21 2010
The terms 0 and 1 are the only squares in this sequence, as a(n) == 3 (mod 4) for n>=2. - Nehul Yadav, Sep 26 2013
For n>=2 the multiplicative order of 10 modulo the a(n) is n. - Robert G. Wilson v, Aug 20 2014
The above is a special case of the statement that the order of z modulo (z^n-1)/(z-1) is n, here for z=10. - Joerg Arndt, Aug 21 2014
Let d be a divisor of a(n). Let m*d be any multiple of d. Split the decimal expansion of m*d into 2 blocks of contiguous digits a and b, so we have m*d = 10^k*a + b for some k, where 0 <= k < number of decimal digits of m*d. Then d divides a^n - (-b)^n (see McGough). For example, 271 divides a(5) and we find 2^5 + 71^5 = 11*73*271*8291 and 27^5 + 1^5 = 2^2*7*31*61*271 are both divisible by 271. Similarly, 4*271 = 1084 and 10^5 + 84^5 = 2^5*31*47*271*331 while 108^5 + 4^5 = 2^12*7*31*61*271 are again both divisible by 271. (End)
Starting with the second term this sequence is the binary representation of the n-th iteration of the Rule 220 and 252 elementary cellular automaton starting with a single ON (black) cell. - Robert Price, Feb 21 2016
0, 1 and 11 are only terms that are of the form x^2 + y^2 + z^2 where x, y, z are integers. In other words, a(n) is a member of A004215 for all n > 2. - Altug Alkan, May 08 2016
Except for the initial terms, the binary representation of the x-axis, from the left edge to the origin, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 737", based on the 5-celled von Neumann neighborhood, initialized with a single black (ON) cell at stage zero. - Robert Price, Mar 17 2017
The term "repunit" was coined by Albert H. Beiler in 1964. - Amiram Eldar, Nov 13 2020
|
|
REFERENCES
|
Albert H. Beiler, Recreations in the Theory of Numbers: The Queen of Mathematics Entertains, New York: Dover Publications, 1964, chapter XI, p. 83.
David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, 1987, pp. 197-198.
Samuel Yates, Peculiar Properties of Repunits, J. Recr. Math. 2, 139-146, 1969.
Samuel Yates, Prime Divisors of Repunits, J. Recr. Math. 8, 33-38, 1975.
|
|
LINKS
|
Amelia Carolina Sparavigna, On Repunits, Politecnico di Torino (Italy, 2019).
Eric Weisstein's World of Mathematics, Repunit.
|
|
FORMULA
|
a(n) = 10*a(n-1) + 1, a(0)=0.
a(n) = 11*a(n-1) - 10*a(n-2), a(0)=0, a(1)=1. - Lekraj Beedassy, Jun 07 2006
|
|
MAPLE
|
|
|
MATHEMATICA
|
Join[{0}, Table[FromDigits[PadRight[{}, n, 1]], {n, 20}]] (* Harvey P. Dale, Mar 04 2012 *)
|
|
PROG
|
(PARI) x='x+O('x^99); concat(0, Vec(x/((1-10*x)*(1-x)))) \\ Altug Alkan, Apr 10 2016
(Sage) [lucas_number1(n, 11, 10) for n in range(21)] # Zerinvary Lajos, Apr 27 2009
(Haskell)
a002275 = (`div` 9) . subtract 1 . (10 ^)
a002275_list = iterate ((+ 1) . (* 10)) 0
(Maxima)
a[0]:0$
a[1]:1$
a[n]:=11*a[n-1]-10*a[n-2]$
(Python)
|
|
CROSSREFS
|
Cf. A000042, A046053, A095370, A002276, A002277, A002278, A002279, A002280, A002281, A002282, A059988, A065444, A075415, A178635, A102380, A204845, A204846, A204847, A204848, A083278, A206244, A125134, A004023.
|
|
KEYWORD
|
easy,nonn,nice,core,changed
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|