OFFSET
1,3
COMMENTS
Factoring certain repunits is especially difficult.
REFERENCES
Yates, S. "Peculiar Properties of Repunits." J. Recr. Math. 2, 139-146,1969.
Yates, S. "Prime Divisors of Repunits." J. Recr. Math. 8, 33-38, 1975.
LINKS
Patrick De Geest, Repunits and their prime factors
T. Granlund, Repunits.
M. Kamada, Factorization of 11...11(Repunits)
Y. Koide, Factorization of Repunit Numbers
W. M. Snyder, Factoring Repunits, Am. Math. Monthly 89, 462-466, 1982.
P. Yiu, Factorizations of repunits R_n for n<=50 Appendix Chap.18.5 pp. 173/360 in 'Recreational Mathematics'
FORMULA
EXAMPLE
a(62)=5 because
11111111111111111111111111111111111111111111111111111111111111 =
11 * 2791 * 6943319 * 57336415063790604359 * 909090909090909090909090909091.
a(97)=3 because (10^97 - 1)/9 = 12004721 * 846035731396919233767211537899097169 * 109399846855370537540339266842070119107662296580348039.
MATHEMATICA
lst={}; Do[p=(10^n-1)/9; AppendTo[lst, Length[FactorInteger[p]]], {n, 0, 2*4!}]; lst (* Vladimir Joseph Stephan Orlovsky, Jun 15 2009 *)
PROG
(PARI) a(n)=omega(10^n\9) \\ Charles R Greathouse IV, Sep 14 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Jun 04 2004; corrected Jun 09 2004
EXTENSIONS
Terms to a(322) in b-file from Ray Chandler, Apr 22 2017
a(323)-a(352) in b-file from Max Alekseyev, Apr 26 2022
STATUS
approved