login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A095370
Number of distinct prime factors of the repunit (-1 + 10^n)/9.
19
0, 1, 2, 2, 2, 5, 2, 4, 3, 4, 2, 7, 3, 4, 6, 6, 2, 8, 1, 7, 7, 6, 1, 10, 5, 6, 5, 8, 5, 13, 3, 11, 6, 6, 7, 11, 3, 3, 6, 11, 4, 14, 4, 10, 9, 6, 2, 13, 4, 10, 8, 9, 4, 12, 8, 12, 6, 8, 2, 20, 7, 5, 13, 15, 7, 14, 3, 10, 6, 12, 2, 17, 3, 7, 12, 6, 8, 15, 6, 15, 10, 7, 3, 21, 7, 8, 10, 14, 5, 21, 12, 10
OFFSET
1,3
COMMENTS
Factoring certain repunits is especially difficult.
REFERENCES
Yates, S. "Peculiar Properties of Repunits." J. Recr. Math. 2, 139-146,1969.
Yates, S. "Prime Divisors of Repunits." J. Recr. Math. 8, 33-38, 1975.
LINKS
T. Granlund, Repunits.
W. M. Snyder, Factoring Repunits, Am. Math. Monthly 89, 462-466, 1982.
P. Yiu, Factorizations of repunits R_n for n<=50 Appendix Chap.18.5 pp. 173/360 in 'Recreational Mathematics'
FORMULA
a(n) = A001221(A002275(n)).
If 3|n, then a(n) = A102347(n); otherwise a(n) = A102347(n) - 1. - Max Alekseyev, Apr 25 2022
EXAMPLE
a(62)=5 because
11111111111111111111111111111111111111111111111111111111111111 =
11 * 2791 * 6943319 * 57336415063790604359 * 909090909090909090909090909091.
a(97)=3 because (10^97 - 1)/9 = 12004721 * 846035731396919233767211537899097169 * 109399846855370537540339266842070119107662296580348039.
MATHEMATICA
lst={}; Do[p=(10^n-1)/9; AppendTo[lst, Length[FactorInteger[p]]], {n, 0, 2*4!}]; lst (* Vladimir Joseph Stephan Orlovsky, Jun 15 2009 *)
PROG
(PARI) a(n)=omega(10^n\9) \\ Charles R Greathouse IV, Sep 14 2015
CROSSREFS
Cf. A046053 (total number of prime factors).
Sequence in context: A183413 A183380 A260587 * A046053 A368303 A368306
KEYWORD
nonn
AUTHOR
Labos Elemer, Jun 04 2004; corrected Jun 09 2004
EXTENSIONS
Terms to a(322) in b-file from Ray Chandler, Apr 22 2017
a(323)-a(352) in b-file from Max Alekseyev, Apr 26 2022
STATUS
approved