login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A095372
1+integers repeating "90" decimal digit pattern:.
15
1, 91, 9091, 909091, 90909091, 9090909091, 909090909091, 90909090909091, 9090909090909091, 909090909090909091, 90909090909090909091, 9090909090909090909091, 909090909090909090909091
OFFSET
0,2
COMMENTS
These numbers arise for example as divisors of several repunits (A002275).
The aerated sequence A(n) = [1, 0, 91, 0, 9091, 0, 909091,...] is a divisibility sequence, i.e., A(n) divides A(m) whenever n divides m. It is the case P1 = 0, P2 = -11^2, Q = 10 of the 3-parameter family of 4th-order linear divisibility sequences found by Williams and Guy. - Peter Bala, Aug 22 2019
Except for a(0) = 1, these terms M are such that 21 * M = 1M1, where 1M1 denotes the concatenation of 1, M and 1. Actually 21 is A329914(1) and a(1) = A329915(1) = 91, and the terms >=91 form the set {M_21}; for example, 21 * 909091 = 1(909091)1. - Bernard Schott, Dec 01 2019
LINKS
H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 1255-1277.
H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences Integers, Volume 12A (2012) The John Selfridge Memorial Volume.
FORMULA
a(n) = 1+90*(-1+100^n)/99 = (10^(2n+1)+1)/11. - Rick L. Shepherd, Aug 01 2004
a(n) = 101*a(n-1)-100*a(n-2). G.f.: -(10*x-1) / ((x-1)*(100*x-1)). - Colin Barker, Jul 03 2013
EXAMPLE
Digit-pattern P=[ab..z] repeating integers equal formally with P*(-1+10^(Ln))/(-1+10^L), where L is the length of pattern;
a(9) divides A002275(38) repunit. See A095371.
MATHEMATICA
Table[1+90*(100^n-1)/99, {n, 0, 20}]
KEYWORD
nonn,easy,base
AUTHOR
Labos Elemer, Jun 07 2004
STATUS
approved