login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A015261
Gaussian binomial coefficient [ n,2 ] for q = -10.
3
1, 91, 9191, 918191, 91828191, 9182728191, 918273728191, 91827363728191, 9182736463728191, 918273645463728191, 91827364555463728191, 9182736455455463728191, 918273645546455463728191
OFFSET
2,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
FORMULA
G.f.: x^2/((1-x)*(1+10*x)*(1-100*x)).
a(2) = 1, a(3) = 91, a(4) = 9191, a(n) = 91*a(n-1) + 910*a(n-2) - 1000*a(n-3). - Vincenzo Librandi, Oct 28 2012
MATHEMATICA
Table[QBinomial[n, 2, -10], {n, 2, 20}] (* Vincenzo Librandi, Oct 28 2012 *)
PROG
(Sage) [gaussian_binomial(n, 2, -10) for n in range(2, 15)] # Zerinvary Lajos, May 27 2009
(Magma) I:=[1, 91, 9191]; [n le 3 select I[n] else 91*Self(n-1) + 910*Self(n-2) - 1000*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Oct 28 2012
CROSSREFS
Sequence in context: A109627 A095372 A165154 * A370780 A168624 A131442
KEYWORD
nonn,easy
AUTHOR
Olivier Gérard, Dec 11 1999
STATUS
approved