|
|
A015262
|
|
Gaussian binomial coefficient [ n,2 ] for q = -11.
|
|
3
|
|
|
1, 111, 13542, 1637362, 198134223, 23974093353, 2900866919644, 351004879413684, 42471590605551405, 5139062461110267955, 621826557818118395106, 75241013495730790109766, 9104162632986302495960347, 1101603678591310956191736717
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
2,2
|
|
REFERENCES
|
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
|
|
LINKS
|
|
|
FORMULA
|
G.f.: x^2/((1-x)*(1+11*x)*(1-121*x)).
a(2) = 1, a(3) = 111, a(4) = 13542, a(n) = 111*a(n-1) + 1221*a(n-2) - 1331*a(n-3). - Vincenzo Librandi, Oct 28 2012
|
|
MATHEMATICA
|
|
|
PROG
|
(Sage) [gaussian_binomial(n, 2, -11) for n in range(2, 14)] # Zerinvary Lajos, May 27 2009
(Magma) I:=[1, 111, 13542]; [n le 3 select I[n] else 111*Self(n-1) + 1221*Self(n-2) - 1331*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Oct 28 2012
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|