|
|
A145698
|
|
Numbers x such that (x+37)^3-x^3 is a square.
|
|
0
|
|
|
111, 76516, 45155207, 26641506492, 15718443685951, 9273855133215476, 5471558810153455767, 3228210424135405697932, 1904638678681079208334991, 1123733592211412597511957636
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
|
|
FORMULA
|
a(n+2)=590*a(n+1)-a(n)+10868.
a(n)=-(2717/147)+(9517/147)*{[295-28*sqrt(111)]^n+[295+28*sqrt(111)]^n}+(12779/2072)*sqrt(111)*{[295+28 *sqrt(111)]^n-[295-28*sqrt(111)]^n}. - Paolo P. Lava, Nov 25 2008
|
|
EXAMPLE
|
a(1)=111 because the first relation is (111+37)^3-111^3=1369^2.
|
|
MATHEMATICA
|
CoefficientList[Series[(37 (-3-295 x+4 x^2))/(-1+591 x-591 x^2+x^3), {x, 0, 10}], x] (* Harvey P. Dale, Feb 20 2011 *)
|
|
PROG
|
(PARI) Vec((111*x^2 - 65749*x + 76516)/(-x^3 + 591*x^2 - 591*x + 1)+O(x^99)) \\ Charles R Greathouse IV, May 28 2014
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|