login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A095375
Total number of 1's in the binary expansions of the first n primes: summatory A014499.
12
1, 3, 5, 8, 11, 14, 16, 19, 23, 27, 32, 35, 38, 42, 47, 51, 56, 61, 64, 68, 71, 76, 80, 84, 87, 91, 96, 101, 106, 110, 117, 120, 123, 127, 131, 136, 141, 145, 150, 155, 160, 165, 172, 175, 179, 184, 189, 196, 201, 206, 211, 218, 223, 230, 232, 236, 240, 245, 249, 253
OFFSET
1,2
LINKS
EXAMPLE
n=4: first 4 primes={10,11,101,111}, with a(4)=8 digits 1.
MAPLE
read("transforms") :
A095375 := proc(n)
local a;
a := 0 ;
for i from 1 to n do
a := a+wt(ithprime(i)) ;
end do:
end proc: # R. J. Mathar, Jul 13 2012
# second Maple program:
a:= proc(n) option remember; `if`(n=0, 0, a(n-1)
+add(i, i=Bits[Split](ithprime(n))))
end:
seq(a(n), n=1..100); # Alois P. Heinz, Jun 26 2021
MATHEMATICA
lib[x_] :=Count[IntegerDigits[x, 2], 1] {s=0, ta=Table[0, {256}]}; Do[s=s+lib[Prime[n]]; ta[[n]]=s, {n, 1, 256}] ta
PROG
(PARI) a(n)=my(s); forprime(p=2, prime(n), s+=hammingweight(p)); s \\ Charles R Greathouse IV, Mar 29 2013
(Python)
from sympy import primerange, prime
def A095375(n): return sum(p.bit_count() for p in primerange(prime(n)+1)) # Chai Wah Wu, Nov 12 2024
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Labos Elemer, Jun 07 2004
STATUS
approved