

A185723


Numbers that are the sum of distinct primes with prime subscripts.


4



3, 5, 8, 11, 14, 16, 17, 19, 20, 22, 25, 28, 31, 33, 34, 36, 39, 41, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 69, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Dressler and Parker proved that every integer > 96 is a sum of distinct terms of A006450 (primes with prime subscripts).
The complement is A213356.


REFERENCES

R. E. Dressler and S. T. Parker, Primes with a prime subscript, J. ACM, 22 (1975), 380381.


LINKS

Table of n, a(n) for n=1..66.


EXAMPLE

Prime(Prime(1)) + Prime(Prime(2)) + Prime(Prime(3)) = Prime(2) + Prime(3) + Prime(5) = 3 + 5 + 11 = 19 is a member.


CROSSREFS

Cf. A006450, A185724, A213356, A214296.
Sequence in context: A047622 A240603 A079392 * A022852 A180124 A095375
Adjacent sequences: A185720 A185721 A185722 * A185724 A185725 A185726


KEYWORD

nonn


AUTHOR

Jonathan Sondow, Jul 10 2012


STATUS

approved



