login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A047622 Numbers that are congruent to {0, 3, 5} mod 8. 4
0, 3, 5, 8, 11, 13, 16, 19, 21, 24, 27, 29, 32, 35, 37, 40, 43, 45, 48, 51, 53, 56, 59, 61, 64, 67, 69, 72, 75, 77, 80, 83, 85, 88, 91, 93, 96, 99, 101, 104, 107, 109, 112, 115, 117, 120, 123, 125, 128, 131, 133, 136, 139, 141, 144, 147, 149, 152, 155, 157 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).

FORMULA

From R. J. Mathar, Oct 18 2008: (Start)

G.f.: x^2*(3+2*x+3*x^2)/((1-x)^2*(1+x+x^2)).

a(n) = A008576(n-1), for n>1. (End)

a(n) = floor((8n-7)/3). - Gary Detlefs, Mar 07 2010

From Wesley Ivan Hurt, Jun 13 2016: (Start)

a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.

a(n) = (24*n-24-3*cos(2*n*Pi/3)-sqrt(3)*sin(2*n*Pi/3))/9.

a(3k) = 8k-3, a(3k-1) = 8k-5, a(3k-2) = 8k-8. (End)

MAPLE

seq(floor((8*n-7)/3), n=1..52); # Gary Detlefs, Mar 07 2010

MATHEMATICA

Select[Range[0, 150], MemberQ[{0, 3, 5}, Mod[#, 8]]&] (* Harvey P. Dale, Oct 04 2012 *)

LinearRecurrence[{1, 0, 1, -1}, {0, 3, 5, 8}, 100] (* Vincenzo Librandi, Jun 14 2016 *)

PROG

(MAGMA) [n : n in [0..150] | n mod 8 in [0, 3, 5]]; // Wesley Ivan Hurt, Jun 13 2016

CROSSREFS

Cf. A008576.

Sequence in context: A137910 A022850 A008576 * A240603 A079392 A185723

Adjacent sequences:  A047619 A047620 A047621 * A047623 A047624 A047625

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 26 11:22 EDT 2021. Contains 347665 sequences. (Running on oeis4.)