login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047408
Numbers that are congruent to {1, 4, 6} mod 8.
3
1, 4, 6, 9, 12, 14, 17, 20, 22, 25, 28, 30, 33, 36, 38, 41, 44, 46, 49, 52, 54, 57, 60, 62, 65, 68, 70, 73, 76, 78, 81, 84, 86, 89, 92, 94, 97, 100, 102, 105, 108, 110, 113, 116, 118, 121, 124, 126, 129, 132, 134, 137, 140, 142, 145, 148, 150, 153, 156, 158
OFFSET
1,2
FORMULA
G.f.: x*(1+3*x+2*x^2+2*x^3)/((1+x+x^2)*(x-1)^2). - R. J. Mathar, Dec 05 2011
a(n) = 3n - 2 - floor(n/3). - Wesley Ivan Hurt, Nov 07 2013
From Wesley Ivan Hurt, Jun 10 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = (24*n-15-3*cos(2*n*Pi/3)-sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 8k-2, a(3k-1) = 8k-4, a(3k-2) = 8k-7. (End)
E.g.f.: 2 + exp(x)*(8*x - 5)/3 - exp(-x/2)*(3*cos(sqrt(3)*x/2) + sqrt(3)*sin(sqrt(3)*x/2))/9. - Stefano Spezia, Mar 30 2023
MAPLE
A047408:=n->3*n-floor(n/3)-2; seq(A047408(k), k=1..100); # Wesley Ivan Hurt, Nov 07 2013
MATHEMATICA
Table[3n-Floor[n/3]-2, {n, 100}] (* Wesley Ivan Hurt, Nov 07 2013 *)
PROG
(Magma) [n : n in [0..150] | n mod 8 in [1, 4, 6]]; // Wesley Ivan Hurt, Jun 10 2016
CROSSREFS
Cf. A047622.
Sequence in context: A003622 A330215 A189533 * A060644 A122550 A191407
KEYWORD
nonn,easy
STATUS
approved