The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A047407 Numbers that are congruent to {0, 4, 6} mod 8. 4
 0, 4, 6, 8, 12, 14, 16, 20, 22, 24, 28, 30, 32, 36, 38, 40, 44, 46, 48, 52, 54, 56, 60, 62, 64, 68, 70, 72, 76, 78, 80, 84, 86, 88, 92, 94, 96, 100, 102, 104, 108, 110, 112, 116, 118, 120, 124, 126, 128, 132, 134, 136, 140, 142, 144, 148, 150, 152, 156 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1). FORMULA From R. J. Mathar, Dec 05 2011: (Start) a(n) = 2*A004772(n). G.f.: 2*x^2*(2+x+x^2) / ((1+x+x^2)*(x-1)^2). (End) From Wesley Ivan Hurt, Jun 10 2016: (Start) a(n) = a(n-1) + a(n-3) - a(n-4) for n>4. a(n) = 2*(12*n-9-2*sqrt(3)*sin(2*n*Pi/3))/9. a(3k) = 8k-2, a(3k-1) = 8k-4, a(3k-2) = 8k-8. (End) a(n) = 2*(n - 1 + floor((n + 1)/3)). - Wolfdieter Lang, Sep 11 2021 MAPLE A047407:=n->2*(12*n-9-2*sqrt(3)*sin(2*n*Pi/3))/9: seq(A047407(n), n=1..100); # Wesley Ivan Hurt, Jun 10 2016 MATHEMATICA Select[Range[0, 200], MemberQ[{0, 4, 6}, Mod[#, 8]]&] (* or *) LinearRecurrence[{1, 0, 1, -1}, {0, 4, 6, 8}, 70] (* Harvey P. Dale, Apr 20 2016 *) PROG (MAGMA) [n : n in [0..160] | n mod 8 in [0, 4, 6]]; // Vincenzo Librandi, May 02 2016 (PARI) a(n)=n\3*8+[-2, 0, 4][n%3+1] \\ Charles R Greathouse IV, May 02 2016 CROSSREFS Cf. A004772, A047395, A047410, A047464. Sequence in context: A241124 A117247 A249722 * A090697 A225508 A235036 Adjacent sequences:  A047404 A047405 A047406 * A047408 A047409 A047410 KEYWORD nonn,easy,changed AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 25 05:14 EDT 2021. Contains 347652 sequences. (Running on oeis4.)