The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A004772 Numbers that are not congruent to 1 mod 4. 22
 0, 2, 3, 4, 6, 7, 8, 10, 11, 12, 14, 15, 16, 18, 19, 20, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 40, 42, 43, 44, 46, 47, 48, 50, 51, 52, 54, 55, 56, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 86, 87, 88, 90 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Numbers n whose binary expansion does not end in 01. Equals partial sums of 0 together with 2, 1, 1, 2, 1, 1, ... (repeated, that is A131534 without the first term). - Bruno Berselli, Dec 06 2016 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1). FORMULA G.f.: x^2*(2 + x + x^2)/((1 + x + x^2)*(x - 1)^2). - R. J. Mathar, Oct 08 2011 a(n) = floor((4*n-2)/3). - Gary Detlefs, Jan 02 2012 a(n) = n + ceiling((n-1)/3) - 1. - Arkadiusz Wesolowski, Sep 18 2012 From Ant King, Oct 19 2012: (Start) a(n) = 4 + a(n-3). a(n) = (12*n -9 - 3*cos(2*(n-1)*Pi/3) + sqrt(3)*sin(2*(n-1)*Pi/3))/9. (End) a(n) = ceiling(4*(n-1)/3). - Jean-François Alcover, Mar 07 2014 MAPLE seq(seq(4*i+j, j=[0, 2, 3]), i=0..100); # Robert Israel, Sep 01 2015 MATHEMATICA LinearRecurrence[{1, 0, 1, -1}, {0, 2, 3, 4}, 68] (* Ant King, Oct 19 2012 *) DeleteCases[Range[0, 90], _?(Mod[#, 4]==1&)] (* Harvey P. Dale, Jun 11 2013 *) CoefficientList[Series[x (2 + x + x^2)/((1 + x + x^2) (x - 1)^2), {x, 0, 100}], x] (* Vincenzo Librandi, Mar 08 2014 *) PROG (MAGMA) [n: n in [0..100] | not n  mod 4 eq 1 ]; // Vincenzo Librandi, Mar 09 2014 (MAGMA) [(4*n-2) div 3: n in [1..100]]; // Bruno Berselli, Dec 06 2016 (PARI) a(n) = (4*n-2)\3; \\ Michel Marcus, Sep 03 2015 CROSSREFS Cf. A016813 (complement). Sequence in context: A188188 A230319 A319371 * A029597 A188262 A099619 Adjacent sequences:  A004769 A004770 A004771 * A004773 A004774 A004775 KEYWORD nonn,easy AUTHOR EXTENSIONS Corrected by Michael Somos, Jun 08 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 28 14:47 EDT 2020. Contains 334684 sequences. (Running on oeis4.)