login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A004772
Numbers that are not congruent to 1 (mod 4).
25
0, 2, 3, 4, 6, 7, 8, 10, 11, 12, 14, 15, 16, 18, 19, 20, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 40, 42, 43, 44, 46, 47, 48, 50, 51, 52, 54, 55, 56, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 86, 87, 88, 90
OFFSET
1,2
COMMENTS
Numbers whose binary expansion does not end in 01.
Equals partial sums of 0 together with 2, 1, 1, 2, 1, 1, ... (repeated, that is A131534 without the first term). - Bruno Berselli, Dec 06 2016
FORMULA
G.f.: x^2*(2 + x + x^2)/((1 + x + x^2)*(x - 1)^2). - R. J. Mathar, Oct 08 2011
a(n) = floor((4*n-2)/3). - Gary Detlefs, Jan 02 2012
a(n) = n + ceiling((n-1)/3) - 1. - Arkadiusz Wesolowski, Sep 18 2012
From Ant King, Oct 19 2012: (Start)
a(n) = 4 + a(n-3).
a(n) = (12*n -9 - 3*cos(2*(n-1)*Pi/3) + sqrt(3)*sin(2*(n-1)*Pi/3))/9. (End)
a(n) = ceiling(4*(n-1)/3). - Jean-François Alcover, Mar 07 2014
Sum_{n>=2} (-1)^n/a(n) = log(sqrt(2)+2)/(2*sqrt(2)) + (2-sqrt(2))*log(2)/8 - (sqrt(2)-1)*Pi/8. - Amiram Eldar, Dec 05 2021
MAPLE
seq(seq(4*i+j, j=[0, 2, 3]), i=0..100); # Robert Israel, Sep 01 2015
MATHEMATICA
LinearRecurrence[{1, 0, 1, -1}, {0, 2, 3, 4}, 68] (* Ant King, Oct 19 2012 *)
DeleteCases[Range[0, 90], _?(Mod[#, 4]==1&)] (* Harvey P. Dale, Jun 11 2013 *)
CoefficientList[Series[x (2 + x + x^2)/((1 + x + x^2) (x - 1)^2), {x, 0, 100}], x] (* Vincenzo Librandi, Mar 08 2014 *)
PROG
(Magma) [n: n in [0..100] | not n mod 4 eq 1 ]; // Vincenzo Librandi, Mar 09 2014
(Magma) [(4*n-2) div 3: n in [1..100]]; // Bruno Berselli, Dec 06 2016
(PARI) a(n) = (4*n-2)\3; \\ Michel Marcus, Sep 03 2015
CROSSREFS
Cf. A016813 (complement).
Sequence in context: A188188 A230319 A319371 * A376455 A029597 A188262
KEYWORD
nonn,easy
EXTENSIONS
Corrected by Michael Somos, Jun 08 2000
STATUS
approved