OFFSET
0,1
COMMENTS
These numbers cannot be expressed as the sum of 3 squares. - Artur Jasinski, Nov 22 2006
These numbers cannot be perfect squares. - Cino Hilliard, Sep 03 2006
a(n-2), n >= 2, appears in the second column of triangle A239126 related to the Collatz problem. - Wolfdieter Lang, Mar 14 2014
The initial terms 7, 15, 23, 31 are the generating set for the rest of the sequence in the sense that, by Lagrange's Four Square Theorem, any number n of the form 8*k+7 can always be written as a sum of no fewer than four squares, and if n = a^2 + b^2 + c^2 + d^2, then (a mod 4)^2 + (b mod 4)^2 + (c mod 4)^2 + (d mod 4)^2 must be one of 7, 15, 23, 31. - Walter Kehowski, Jul 07 2014
Define a set of consecutive positive odd numbers {1, 3, 5, ..., 12*n + 9} and skip the number 6*n + 5. Then the contraharmonic mean of that set gives this sequence. For example, ContraharmonicMean[{1, 3, 7, 9}] = 7. - Hilko Koning, Aug 27 2018
Jacobi symbol (2, a(n)) = Kronecker symbol (a(n), 2) = 1. - Jianing Song, Aug 28 2018
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..5000
Tanya Khovanova, Recursive Sequences
Leo Tavares, Illustration: Twin Square Frames
Leo Tavares, Illustration: Mid-line Hexagons
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 962
Index entries for linear recurrences with constant coefficients, signature (2,-1).
FORMULA
O.g.f: (7 + x)/(1 - x)^2 = 8/(1 - x)^2 - 1/(1 - x). - R. J. Mathar, Nov 30 2007
a(n) = 2*a(n-1) - a(n-2) for n >= 2. - Vincenzo Librandi, May 28 2011
A056753(a(n)) = 7. - Reinhard Zumkeller, Aug 23 2009
a(n) = t(t(t(n))), where t(i) = 2*i + 1.
a(n) = A004767(2*n+1), for n >= 0. See also A004767(2*n) = A017101(n). - Wolfdieter Lang, Feb 03 2022
From Elmo R. Oliveira, Apr 11 2024: (Start)
E.g.f.: exp(x)*(7 + 8*x).
MAPLE
MATHEMATICA
8 Range[0, 60] + 7 (* or *) Range[7, 500, 8] (* or *) Table[8 n + 7, {n, 0, 60}] (* Bruno Berselli, Dec 28 2016 *)
PROG
(Magma) [8*n+7: n in [0..60]]; // Vincenzo Librandi, May 28 2011
(PARI) a(n)=8*n+7 \\ Charles R Greathouse IV, Sep 23 2012
(Haskell)
a004771 = (+ 7) . (* 8)
a004771_list = [7, 15 ..] -- Reinhard Zumkeller, Jan 29 2013
(GAP) List([0..60], n->8*n+7); # Muniru A Asiru, Aug 28 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved