login
A133655
a(n) = 2*A016777(n) + A016777(n-1) - (n+1).
0
1, 7, 15, 23, 31, 39, 47, 55, 63, 71, 79, 87, 95, 103, 111, 119, 127, 135, 143, 151, 159, 167, 175, 183, 191, 199, 207, 215, 223, 231, 239, 247, 255, 263, 271, 279, 287, 295, 303, 311, 319, 327, 335, 343, 351, 359, 367, 375, 383, 391, 399, 407, 415
OFFSET
0,2
FORMULA
Equals "1" followed by A004771.
Binomial transform of [1, 6, 2, -2, 2, -2, 2, ...].
G.f.: (2*x^2+5*x+1)/(x-1)^2. - Harvey P. Dale, Sep 13 2011
EXAMPLE
a(3) = 23 = 2*A016777(3) + A016777(2) - 4 = 2*10 + 7 - 4.
a(3) = 23 = (1, 3, 3, 1) dot (1, 6, 2, -2) = (1, 18, 6, -2).
MATHEMATICA
CoefficientList[Series[(2 x^2+5 x+1)/(x-1)^2, {x, 0, 60}], x] (* Harvey P. Dale, Sep 13 2011 *)
CROSSREFS
Sequence in context: A189754 A059562 A017149 * A004771 A029724 A194400
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Sep 20 2007
EXTENSIONS
More terms and corrected definition from R. J. Mathar, Jun 08 2008
STATUS
approved