|
|
A059562
|
|
Beatty sequence for log(Pi)/(log(Pi)-1).
|
|
4
|
|
|
7, 15, 23, 31, 39, 47, 55, 63, 71, 79, 87, 94, 102, 110, 118, 126, 134, 142, 150, 158, 166, 174, 181, 189, 197, 205, 213, 221, 229, 237, 245, 253, 261, 268, 276, 284, 292, 300, 308, 316, 324, 332, 340, 348, 355, 363, 371, 379, 387, 395, 403, 411, 419, 427
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Harry J. Smith, Table of n, a(n) for n = 1..2000
Aviezri S. Fraenkel, Jonathan Levitt, Michael Shimshoni, Characterization of the set of values f(n)=[n alpha], n=1,2,..., Discrete Math. 2 (1972), no.4, 335-345.
Eric Weisstein's World of Mathematics, Beatty Sequence
Index entries for sequences related to Beatty sequences
|
|
PROG
|
(PARI) { default(realprecision, 100); b=log(Pi)/(log(Pi) - 1); for (n = 1, 2000, write("b059562.txt", n, " ", floor(n*b)); ) } \\ Harry J. Smith, Jun 28 2009
(PARI) A059562(n, c=1-1/log(Pi))=n\c \\ Use \pXX to set sufficiently large precision. - M. F. Hasler, Oct 06 2014
|
|
CROSSREFS
|
Beatty complement is A059561.
Sequence in context: A136768 A031490 A189754 * A017149 A133655 A004771
Adjacent sequences: A059559 A059560 A059561 * A059563 A059564 A059565
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Mitch Harris, Jan 22 2001
|
|
STATUS
|
approved
|
|
|
|