login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A059559 Beatty sequence for 1 + log(1/gamma), (gamma is the Euler-Mascheroni constant A001620). 2
1, 3, 4, 6, 7, 9, 10, 12, 13, 15, 17, 18, 20, 21, 23, 24, 26, 27, 29, 30, 32, 34, 35, 37, 38, 40, 41, 43, 44, 46, 48, 49, 51, 52, 54, 55, 57, 58, 60, 61, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 79, 80, 82, 83, 85, 86, 88, 89, 91, 92, 94, 96, 97, 99, 100, 102, 103, 105, 106 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Harry J. Smith, Table of n, a(n) for n = 1..2000

Aviezri S. Fraenkel, Jonathan Levitt, Michael Shimshoni, Characterization of the set of values f(n)=[n alpha], n=1,2,..., Discrete Math. 2 (1972), no.4, 335-345.

Eric Weisstein's World of Mathematics, Beatty Sequence.

Index entries for sequences related to Beatty sequences

FORMULA

a(n) = floor(n*(1 + log(1/Euler))). - Michel Marcus, Jan 05 2015

MATHEMATICA

Table[Floor[n*(1 + Log[1/EulerGamma])], {n, 1, 100}] (* G. C. Greubel, Aug 27 2018 *)

PROG

(PARI) { default(realprecision, 100); b=1 + log(1/Euler); for (n = 1, 2000, write("b059559.txt", n, " ", floor(n*b)); ) } \\ Harry J. Smith, Jun 28 2009

(MAGMA) R:=RealField(100); [Floor(1+Log(1/EulerGamma(R))*n): n in [1..100]]; // G. C. Greubel, Aug 27 2018

CROSSREFS

Beatty complement is A059560.

Sequence in context: A140098 A226901 A286323 * A329847 A103877 A072561

Adjacent sequences:  A059556 A059557 A059558 * A059560 A059561 A059562

KEYWORD

nonn,easy

AUTHOR

Mitch Harris, Jan 22 2001

EXTENSIONS

Corrected the definition from 1-log(1/gamma) to 1+log(1/gamma). - Harry J. Smith, Jun 28 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 17 16:32 EDT 2021. Contains 345085 sequences. (Running on oeis4.)