login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226901
Partial sums of Hooley's Delta function.
3
1, 3, 4, 6, 7, 9, 10, 12, 13, 15, 16, 19, 20, 22, 24, 26, 27, 29, 30, 33, 35, 37, 38, 42, 43, 45, 46, 48, 49, 52, 53, 55, 56, 58, 60, 63, 64, 66, 67, 71, 72, 75, 76, 78, 80, 82, 83, 87, 88, 90, 91, 93, 94, 96, 98, 101, 102, 104, 105, 109, 110, 112, 114, 116, 118, 120, 121
OFFSET
1,2
COMMENTS
Tenenbaum (1985) proves that a(n) < n exp(c sqrt(log log n log log log n)) for some constant c > 0 and all n > 16. Numerically, c appears to be close to 0.5 or 0.55.
REFERENCES
R. R. Hall and G. Tenenbaum, On the average and normal orders of Hooley's ∆-function, J. London Math. Soc. (2), Vol. 25, No. 3 (1982), pp. 392-406.
C. Hooley, On a new technique and its applications to the theory of numbers, Proc. London Math. Soc. 3 38:1 (1979), pp. 115-151.
Gérald Tenenbaum, Sur la concentration moyenne des diviseurs, Commentarii Mathematici Helvetici 60:1 (1985), pp. 411-428.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Dimitris Koukoulopoulos and Terence Tao, A note on the mean value of the Erdős-Hooley Delta function, arXiv preprint (2023). arXiv:2306.08615 [math.NT]
FORMULA
n log log n << a(n) << n (log log n)^(11/4); the lower bound is due to Hall & Tenenbaum (1988) and the upper bound to Koukoulopoulos & Tao.
MAPLE
with(numtheory):
b:= n-> (l-> max(seq(nops(select(x-> is(x<=exp(1)*l[i]), l))-i+1,
i=1..nops(l))))(sort([divisors(n)[]])):
a:= proc(n) a(n):= b(n) +`if`(n=1, 0, a(n-1)) end:
seq(a(n), n=1..100); # Alois P. Heinz, Jun 21 2013
MATHEMATICA
delta[n_] := Module[{d = Divisors[n], m = 1}, For[i = 1, i < Length[d], i++, t = E*d[[i]]; m = Max[Sum[Boole[d[[j]] < t], {j, i, Length[d]}], m]]; m];
A226901 = Array[delta, 100] // Accumulate (* Jean-François Alcover, Mar 24 2017, translated from PARI *)
PROG
(PARI) Delta(n)=my(d=divisors(n), m=1); for(i=1, #d-1, my(t=exp(1)*d[i]); m=max(sum(j=i, #d, d[j]<t), m)); m
s=0; vector(100, n, s+=Delta(n))
CROSSREFS
Partial sums of A226898.
Sequence in context: A064717 A109231 A140098 * A286323 A059559 A329847
KEYWORD
nonn
AUTHOR
STATUS
approved