Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Jun 27 2023 08:09:22
%S 1,3,4,6,7,9,10,12,13,15,16,19,20,22,24,26,27,29,30,33,35,37,38,42,43,
%T 45,46,48,49,52,53,55,56,58,60,63,64,66,67,71,72,75,76,78,80,82,83,87,
%U 88,90,91,93,94,96,98,101,102,104,105,109,110,112,114,116,118,120,121
%N Partial sums of Hooley's Delta function.
%C Tenenbaum (1985) proves that a(n) < n exp(c sqrt(log log n log log log n)) for some constant c > 0 and all n > 16. Numerically, c appears to be close to 0.5 or 0.55.
%D R. R. Hall and G. Tenenbaum, On the average and normal orders of Hooley's ∆-function, J. London Math. Soc. (2), Vol. 25, No. 3 (1982), pp. 392-406.
%D C. Hooley, On a new technique and its applications to the theory of numbers, Proc. London Math. Soc. 3 38:1 (1979), pp. 115-151.
%D Gérald Tenenbaum, Sur la concentration moyenne des diviseurs, Commentarii Mathematici Helvetici 60:1 (1985), pp. 411-428.
%H Charles R Greathouse IV, <a href="/A226901/b226901.txt">Table of n, a(n) for n = 1..10000</a>
%H Dimitris Koukoulopoulos and Terence Tao, <a href="https://arxiv.org/abs/2306.08615">A note on the mean value of the Erdős-Hooley Delta function</a>, arXiv preprint (2023). arXiv:2306.08615 [math.NT]
%F n log log n << a(n) << n (log log n)^(11/4); the lower bound is due to Hall & Tenenbaum (1988) and the upper bound to Koukoulopoulos & Tao.
%p with(numtheory):
%p b:= n-> (l-> max(seq(nops(select(x-> is(x<=exp(1)*l[i]), l))-i+1,
%p i=1..nops(l))))(sort([divisors(n)[]])):
%p a:= proc(n) a(n):= b(n) +`if`(n=1, 0, a(n-1)) end:
%p seq(a(n), n=1..100); # _Alois P. Heinz_, Jun 21 2013
%t delta[n_] := Module[{d = Divisors[n], m = 1}, For[i = 1, i < Length[d], i++, t = E*d[[i]]; m = Max[Sum[Boole[d[[j]] < t], {j, i, Length[d]}], m]]; m];
%t A226901 = Array[delta, 100] // Accumulate (* _Jean-François Alcover_, Mar 24 2017, translated from PARI *)
%o (PARI) Delta(n)=my(d=divisors(n), m=1); for(i=1, #d-1, my(t=exp(1)*d[i]); m=max(sum(j=i, #d, d[j]<t), m)); m
%o s=0; vector(100,n,s+=Delta(n))
%Y Partial sums of A226898.
%Y Cf. A226899, A226900.
%K nonn
%O 1,2
%A _Charles R Greathouse IV_, Jun 21 2013