login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059557
Beatty sequence for 1 + gamma^2, (gamma is the Euler-Mascheroni constant A001620).
4
1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 45, 46, 47, 49, 50, 51, 53, 54, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89, 90, 91, 93, 94
OFFSET
1,2
LINKS
Aviezri S. Fraenkel, Jonathan Levitt, Michael Shimshoni, Characterization of the set of values f(n)=[n alpha], n=1,2,..., Discrete Math. 2 (1972), no.4, 335-345.
Eric Weisstein's World of Mathematics, Beatty Sequence.
FORMULA
a(n) = A042968(n-1), 1<=n<2146. - R. J. Mathar, Oct 05 2008
MATHEMATICA
Table[Floor[(1 + EulerGamma^2)*n], {n, 1, 100}] (* G. C. Greubel, Aug 27 2018 *)
PROG
(PARI) { default(realprecision, 100); b=1 + Euler^2; for (n = 1, 2000, write("b059557.txt", n, " ", floor(n*b)); ) } \\ Harry J. Smith, Jun 28 2009
(Magma) R:=RealField(100); [Floor((1+EulerGamma(R)^2)*n): n in [1..100]]; // G. C. Greubel, Aug 27 2018
CROSSREFS
Beatty complement is A059558.
Sequence in context: A039053 A352675 A329974 * A195291 A042968 A337037
KEYWORD
nonn,easy
AUTHOR
Mitch Harris, Jan 22 2001
STATUS
approved