login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A042968 Numbers not divisible by 4. 55
1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 45, 46, 47, 49, 50, 51, 53, 54, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Equivalently, numbers whose square part is odd. Cf. A028982. - Peter Munn, Jul 14 2020

More generally the sequence of numbers not divisible by some fixed integer m >= 2 is given by a(n,m) = 1 + n + floor(n/(m-1)). - Benoit Cloitre, Jul 11 2009

Also a(n,m) = floor((m*n-1)/(m-1)) [with offset 1]. - Gary Detlefs, May 14 2011

Numbers not having more even than odd divisors: A048272(a(n)) >= 0. - Reinhard Zumkeller, Jan 21 2012

Extending the comments of Benoit Cloitre (Jul 11 2009) and Gary Detlefs (May 14 2011), the g.f. is A(m,x) = (1-x^m) / ((1-x^(m-1))*(1-x)^2) where m >= 2 is fixed. - Werner Schulte, Apr 26 2018

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000

Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).

FORMULA

a(n) = a(n-1) + a(n-3) - a(n-4).

a(n) = a(n-3) + 4, with a(1) = 1.

G.f.: x * (1+x) * (1+x^2) / ( (1+x+x^2)*(1-x)^2 ). - Michael Somos, Jan 12 2000

A064680(A064680(a(n))) = a(n). - Reinhard Zumkeller, Oct 19 2001

Nearest integer to (Sum_{k>n} 1/k^4)/(Sum_{k>n} 1/k^5). - Benoit Cloitre, Jun 12 2003

a(n) = n + 1 + floor(n/3). - Benoit Cloitre, Jul 11 2009

a(n) = floor((4*n+3)/3). - Gary Detlefs, May 14 2011

A214546(a(n)) >= 0 for n > 0. - Reinhard Zumkeller, Jul 20 2012

a(n) = 2*n - ceiling(2*n/3) + 1. - Arkadiusz Wesolowski, Sep 21 2012

Sum_{k=0..n} a(n) = A071619(n+1). - L. Edson Jeffery, Jul 30 2014

The g.f. A(x) satisfies x*A(x)^2 = (B(x)/x)^2 + (B(x)/x), where B(x) is the o.g.f. of A042965. - Peter Bala, Apr 12 2017

a(n) = (12*n + 6 + 3*cos(2*n*Pi/3) + sqrt(3)*sin(2*n*Pi/3))/9. - Wesley Ivan Hurt, Sep 30 2017

Euler transform of length 4 sequence [2, 0, 1, -1]. - Michael Somos, Jun 17 2018

a(n) = -a(-1-n) for all n in Z. - Michael Somos, Jun 17 2018

E.g.f.: (2/3)*exp(x)*(1 + 2*x) + (1/9)*exp(-x/2)*(3*cos(sqrt(3)*x/2) + sqrt(3)*sin(sqrt(3)*x/2)). - Stefano Spezia, Nov 16 2019

a(n) = (12*n + 6 + w^(2*n)*(w + 2) - w^n*(w - 1))/9 where w = (-1 + sqrt(-3))/2. - Guenther Schrack, Jun 07 2021

Sum_{n>=1} (-1)^(n+1)/a(n) = (2*sqrt(2)-1)*Pi/8. - Amiram Eldar, Dec 05 2021

EXAMPLE

G.f. = 1 + 2*x + 3*x^2 + 5*x^3 + 6*x^4 + 7*x^5 + 9*x^6 + 10*x^7 + 11*x^8 + ... - Michael Somos, Jun 17 2018

MAPLE

seq(n+floor((n-1)/3), n=1..80); # Muniru A Asiru, Feb 17 2019

MATHEMATICA

Select[Table[n, {n, 200}], Mod[#, 4] != 0&] (* Vladimir Joseph Stephan Orlovsky, Feb 18 2011 *)

PROG

(PARI) {a(n) = 1 + n + n\3};

(Haskell)

a042968 = (`div` 3) . (subtract 1) . (* 4)

a042968_list = filter ((/= 0) . (`mod` 4)) [1..]

-- Reinhard Zumkeller, Sep 02 2012

(MAGMA) [n+1+Floor(n/3): n in [0..80]]; // Vincenzo Librandi, Aug 03 2015

(Sage) [1+n+floor(n/3) for n in (0..80)] # G. C. Greubel, Feb 17 2019

CROSSREFS

Cf. A001651, A001935, A028982, A070048, A042965, A064680.

Cf. A071619 (partial sums); A008586 (complement).

Numbers that are congruent to {k0,k1,k2} mod 4: A004772, A004773, A042965, a(n).

Sequence in context: A329974 A059557 A195291 * A337037 A048103 A276078

Adjacent sequences:  A042965 A042966 A042967 * A042969 A042970 A042971

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Dec 11 1999

EXTENSIONS

Edited by Peter Munn, Nov 16 2019

I restored my original (1999) definition and offset, which in the intervening 21 years had been lost. - N. J. A. Sloane, Jun 12 2021

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 29 09:21 EDT 2022. Contains 354910 sequences. (Running on oeis4.)