login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A053510
Decimal expansion of log(Pi).
46
1, 1, 4, 4, 7, 2, 9, 8, 8, 5, 8, 4, 9, 4, 0, 0, 1, 7, 4, 1, 4, 3, 4, 2, 7, 3, 5, 1, 3, 5, 3, 0, 5, 8, 7, 1, 1, 6, 4, 7, 2, 9, 4, 8, 1, 2, 9, 1, 5, 3, 1, 1, 5, 7, 1, 5, 1, 3, 6, 2, 3, 0, 7, 1, 4, 7, 2, 1, 3, 7, 7, 6, 9, 8, 8, 4, 8, 2, 6, 0, 7, 9, 7, 8, 3, 6, 2, 3, 2, 7, 0, 2, 7, 5, 4, 8, 9, 7, 0, 7, 7, 0, 2, 0, 0, 9
OFFSET
1,3
COMMENTS
Also the least positive x such that sin(exp(x))==0.
Also real part of log(log(-1)). - Stanislav Sykora, May 11 2015
Cheng, Dietel, Herblot, Huang, Krieger, Marques, Mason, Mereb, & Wilson show, expanding a remark by S. Lang, that Schanuel's conjecture implies that this constant and Pi are algebraically independent over a set E which includes the algebraic numbers and (in a technical sense) allows any finite number of exponentiations, see the paper for details and a still more general result. - Charles R Greathouse IV, Dec 15 2019
REFERENCES
Wolfram Research, 1991 Mathematica Conference, Elementary Tutorial Notes, Section 1, Introduction to Mathematica, Paul Abbott, page 25.
LINKS
Chuangxun Cheng, Brian Dietel, Mathilde Herblot, Jingjing Huang, Holly Krieger, Diego Marques, Jonathan Mason, Martin Mereb, S. Robert Wilson, Some consequences of Schanuel's conjecture, Journal of Number Theory 129:6 (2009), pp. 1464-1467.
Michael Penn, Frullani Integral, YouTube video, 2021.
FORMULA
Equals log(log(-1)) - (Pi/2)*I. - Stanislav Sykora, May 11 2015
Equals 1 + Sum_{n>=1} zeta(2*n)/(n*(2*n+1)*2^(2*n)), where zeta is the Riemann zeta function. - Vaclav Kotesovec, Mar 04 2016
Equals 3/2 - Sum_{k>=1} (zeta(2*k)-1)/(k+1). - Vaclav Kotesovec, Jun 19 2021
EXAMPLE
1.1447298858494001741...
MATHEMATICA
RealDigits[Log[Pi], 10, 111][[1]]
PROG
(PARI) log(Pi) \\ Charles R Greathouse IV, Jan 04 2016
(Magma) R:= RealField(100); Log(Pi(R)); // G. C. Greubel, May 15 2019
(SageMath) numerical_approx(log(pi), digits=100) # G. C. Greubel, May 15 2019
CROSSREFS
Sequence in context: A010476 A020762 A204158 * A197009 A204156 A163106
KEYWORD
cons,easy,nonn
AUTHOR
Hsu, Po-Wei (Benny) (arsene_lupin(AT)intekom.co.za), Jan 14 2000
EXTENSIONS
More terms from James A. Sellers, Jan 20 2000
STATUS
approved